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ABSTRACT
Association rule mining is a well-researched area where many
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algorithms have been proposed to improve the speed of min-
ing. In this paper, we propose an innovative algorithm called
Rapid Association Rule Mining (RARM) to once again break
this speed barrier. It uses a versatile tree structure known
as the Szlpport-Ordered  Die  Ztemset (SOTrieIT) structure to
hold pre-processed transactional data. This allows RARM
to generate large l-itemsets  and 2-itemsets  quickly without
scanning the database and without candidate 2-itemset  gen-
eration. It achieves significant speed-ups because the main
bottleneck in association rule mining using the Apriori prop-
erty is the generation of candidate 2-itemsets.  RARM has
been compared with the classical mining algorithm Apriori
and it is found that it outperforms Apriori by up to two or-
ders of magnitude (100 times), much more than what recent
mining algorithms are able to achieve.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Data Mining

Keywords
Association rule mining, electronic commerce, index data
structure

1. INTRODUCTION
Since the dawn of the Internet era in 1994, electronic com-

merce is growing at, such an astonishing rate that companies
around the world race to move their business online in order
to position themselves for the near future when the Internet
would dominate worldwide trading.

In a Forrester Research article, Global ecommerce  Ap-
proaches Hypergrowth [lo],  ‘t .1  IS  estimated that global Inter-
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net trade would reach US$6.8  trillion in 2004, amounting
to 8.6% of the global sales of goods and services. Hence, it
is obvious as well as inevitable that companies will realign
their business strategies with the Internet.

One of the most important areas that needs addressing
is Customer Relationship Management (CRM) [4]  which is
now a US$11.5 billion market. In a fast-changing environ-
ment like the Internet, data is abundant in the form of trans-
actional data. In electronic commerce, thousands and mil-
lions of transactions can easily take place in a single day.
Embedded within these data is valuable hidden knowledge
about the behavior of customers that could be unraveled
with data mining techniques. Hence, the importance of
data mining in electronic commerce, particularly in CRM,
is undisputed.

Market basket analysis [3]  or the mining of association
rules is the most practical and beneficial data mining tech-
nique to be used in electronic commerce. This is particularly
true in CRM because it focuses on the buying habits of cus-
tomers and helps to decide which products to be bundled
together. It can be employed in a wide variety of applica-
tions such as marketing, promotional bundling of products
and planning an optimal virtual store layout.

In this paper, a new algorithm called Rapid Association
Rule Mining (RARM) is proposed to further push the speed
barrier so that association rule mining can be performed
more efficiently in electronic commerce. To achieve large
speed-ups even at low support, thresholds, RARM constructs
a new data structure called Support-Ordered Trie  Ztemset
(SOTrieIT). This trie-like tree structure stores the support
counts of all 1-itemsets and 2-itemsets  in the database. All
transactions that arrive are pre-processed; all 1-itemsets and
2-itemsets  are extracted from each transaction. The ex-
tracted information is used to update the SOTrieIT. This
structure is then sorted according to the support counts of
each node in descending order.

RARM uses SOTrieIT to quickly discover large 1-itemsets
and 2-itemsets  without scanning the database. The need to
generate candidate 1-itemsets and 2-itemsets  constitutes the
main bottleneck in large itemset  generation, as observed in
[9]. Therefore, by eliminating this step, RARM achieves sig-
nificant speed-ups even though subsequently, it also applies
the Apriori algorithm to obtain larger-sized itemsets.

Experiments have been conducted to study the perfor-
mance of RARM and compare it against Apriori [2]. RARM
is found to outperform Apriori by up to two orders of magni-
tude, far exceeding what the latest algorithms can achieve.

The rest, of the paper is organized as follows. The next
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section reviews related work. Section 3 gives a description of
the problem while Section 4 presents the new tree structure.
Section 5 describes the RARM algorithm. Time and space
complexity of the new structure will be examined in Section
6. Performance evaluation is discussed in Section 7. Finally,
the paper is concluded and recommendations for future work
are made in Section 8.

2. RELATED WORK
Since the introduction of the Apriori algorithm [2]  in 1994,

there has been sustained interest in discovering new associ-
ation rule mining algorithms that could perform more effi-
ciently. Incremental algorithms are presented in [5,  6, 111
and algorithms which support dynamic support thresholds
are introduced in [l,  81.  However, in this paper, we are only
interested in breaking the speed barrier. Hence, in this sec-
tion, we will only look at two influential algorithms which
achieve impressive speed-ups against Apriori.

The Direct Hashing and Pruning (DHP) algorithm [9]  is
the next widely used algorithm for the efficient mining of
association rules. It is built on top of Apriori but it em-
ploys a hashing technique to reduce the size of candidate
itemsets  and database. This amounts to significant speed-
ups because the dominating factor in the generation of large
itemsets  is the size of the candidate  itemscts, particularly
that of the candidate P-itemsets. Jong et al. divides the
DHP algorithm into the following three main parts:

1. A set of large 1-itemsets is obtained and a hash table
for 2-itemsets  is built.

2. Candidate k-itemsets are generated based on the hash
table built from the previous iteration. The hash ta-
ble serves as a filtering mechanism; DHP only adds
an itemset  to the set of candidate L-itemsets  if it is
hashed to an entry whose value is larger or equal to the
minimum support count needed. Large k-itemsets are
determined and a hash table for the candidate (k+l)-
itemsets  is built as well.

3. Same as part 2 except that hash tables are not used.
This is because part 3 is only used in later iterations
where significantly lesser candidate itemsets  are gen-
erated.

It is obvious that DHP incurs additional overheads due
to the need to do hashing and to maintain a hash table.
Therefore, after experiments are performed, it is concluded
that the hashing technique should only be applied during
the generation of candidate 2-itemsets  and not for the gen-
eration of large candidate itemsets. This allows DHP to
achieve speed-ups of up to three times against Apriori.

Recently, Han et al. proposed the Frequent Pattern Growth
(FP-growth) [7]  algorithm which achieves impressive results
compared to Apriori. It completely eliminates the candi-
date generation bottleneck by using a new tree structure
called Frequent Pattern pee  (FP-tree) which stores critical
itemset information. This compact structure also removes
the need for database scans and it is constructed using only
two scans. In the first database scan, large 1-itemsets Li
are obtained and sorted in support descending order. In
the second scan, items in the transactions are first sorted
according to the order of L1.  These sorted items are used

to construct the FP-tree. Refer to [7]  for the construction
details and completeness proof of the FP-tree.

FP-growth then proceeds to recursively mine FP-trees of
decreasing size to generate large itemsets  without candidate
generation and database scans. It does so by examining
all the conditional pattern bases of the FP-tree, which con-
sists of the set of large itemsets  occurring with the suffix
pattern. Conditional FP-trees are constructed from these
conditional pattern bases and mining is carried out recur-
sively with such trees to discover large itemsets  of various
sizes. However, the construction and use of the FP-trees
are complex and cause the performance of FP-growth to be
on par with Apriori at support thresholds of 3% and above.
It only shows significant speed-ups at support thresholds of
1.5% and below.

3. PROBLEM DESCRIPTION
The problem of mining association rules can be formally

described as follows: Let I = {ai,as,...,a,}  be a set of
literals called items. Let D be a database of transactions,
where each transaction T contains a set of items such that
T & I. An itemset  is a set of items and a Ic-itemset is an
itemset that contains exactly k items. For a given itemset
X C I and a given transaction T, T contains X if and only if
X C T. Let (T=  be the support count of an itemset  X, which
is the number of transactions in D that contain X. Let s be
the support threshold and IDI  be the number of transactions
in D. An itemset  X is large or frequent if (TX 2  ID]  x s%.
An association rule is an implication of the form X --r. Y,
where X & I,  Y C_  I and X fl Y = 0. The association rule
X ti Y holds in the database D with confidence c%  if no
less than c%  of the transactions in D that contain X also
contain Y. The association rule X ti Y has support 8%
in D if UXUY  = IDI  x s%.

For a given pair of confidence and support thresholds, the
problem of mining association rules is to discover all rules
that have confidence and support greater than the corre-
sponding thresholds. For example, in a computer hardware
shop, the association rule Scanner ==+  Printer means that
whenever customers buy scanners, they also buy printers c%
of the time and this trend occurs s% of the time.

This problem can be decomposed into two sub-problems
as discussed in [2]:

1. Finding of large itemsets

2. Generation of association rules from large itemsets

Most researchers addressed the first sub-problem only be-
cause it is more computationally expensive. Moreover, once
the large itemsets  are identified, the corresponding associa-
tion rules can be generated in a simple and straightforward
manner. Hence, only the first sub-problem will be addressed
in this paper. For a discussion of optimized algorithms for
the generation of association rules, more information can be
found at [l].

4. DATA STRUCTURE
This section first describes a general trie-like structure,

followed by an enhanced version of it and finally the most
optimized version. A trie is a tree structure whose organi-
zation is based on a hey space decomposition. In key space
decomposition, the key range is equally subdivided and the
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Table 1: An example transaction database with N =
4 .

splitting position within the key range for each node is pre-
defined. An alphabet trie  is a trie used to store a dictionary
of words. The following data structures will be based on the
alphabet trie.

4.1 A Complete TrieIT
Given a database D of transactions, we store it as a forest

of lexicographically-ordered tree nodes known as  Trie  Item-
set (TrieIT) so that the first sub-problem of association rule
mining-finding large itemsets-can be done efficiently. Let
the set of items I = {cJ~,o~,  . . ,a~}  in the database be or-
dered so that for any two items ai  E I, aj  E I (1 < i, j < N),
ai  4 aj  if and only if i < j. Likewise, every transaction
T E D is also ordered with respect to the ordering in I.

DEFINITION 1. A complete TrieIT is a set of tree nodes
such that every tree node w is a .Z-tuple  (we,  w,) where w( E
I is the label of the node and wC is a support count. Since
every tree node corresponds to some item ai  E I,  for brevity,
we also use wi to refer to a tree node that corresponds to
ai  E I. The following conditions hold:

1. Let, C(w;)  be the ordered set of children nodes of Wi.
If C(wi)  # 0, then C(wi)  S {wi+l, wifa,. . ,wN}.

2. Givenanodewi,letWk,Wlc+l,...,Wi--l(l~k~i-1)
be the set of nodes on the path from the root to the
parent of wi,  then w, (the count of wi)  is a count of
the ih5m.d  {ah,  @+I,.  . . , ai} in the database. Hence,
the support count of any k-itemset  can be obtained by
following a set of nodes to a depth of k.

Each complete TrieIT Wi corresponds to some ai  6 I such
that the root node has label ai.  Then D is stored as a set of
complete %eITs  denoted by W where
wc{wl,wZ  ,...,  WN}. I

In order to improve the efficiency of finding large itemsets
using complete TrieITs, every transaction T E D is inserted
into W as follows: Every ordered itemset X E P(T) (P(T)
is the powerset of T) increases the count by one of node wj
of TrieIT Wi where ai  and aj  are the first and last items of X
respectively. If TrieIT Wi or node wj does not exist, it is cre-
ated with an initial count of one. Thus, each T E D updates
the support counts of all its sub-itemsets (from its power-
set) in the corresponding TrieITs of W. Hence, no database
scanning is required subsequently as the support counts are
already stored in the WeITs. The following example illus-
trates the concept of TrieITs and how transactions update
the TrieITs.

4.1.1 Example
Figure l(a) shows the TrieITs after the transactions 100

to 300 in Table 1 have been inserted into the tree. The
numbers in brackets are the support counts. The special

node ROOT simply contains pointers to the root nodes of
the TrieITs. To understand how the TrieITs are updated,
let us see what happens when transaction 400 is inserted.

From transaction 400, the following itemsets are extracted
from it:

l 1-itemsets: {A}, {B}, {C}, {D}

l 2-itemsets:  {A,B},  {A, C}, {A, D}, {B, C}, {B, D},
{CY Dl

l 3-itemsets:  {A, B, C}, {A, B, D}, {A, C, D}, {B, C, D}

l 4-itemsets:  {A, B, C, D}

They are used to increment the support counts of their
corresponding nodes in the TrieITs by one. To locate the
node that corresponds to an itemset {ak, akfl, . , ai}, sim-
ply trace the path {ak, a&l,.  . . , ai} from the ROOT node.
If a node does not exist, create a new node and initialized
it with a support count of 1. Here, we need to create seven
nodes with the label D to represent itemsets ending with
the item D. The resultant set of complete TrieITs is shown
in Figure l(b). This set of TrieITs contains the maximum
number of tree nodes because all N unique items appear in
the database.

To obtain the support count of an itemset,  simply locate
its path along the tree nodes. The node representing the
last item in the itemset would contain the support count
for the itemset.  For example, to find the support count of
itemset {A, B, D}, locate the path from the ROOT node to
the node containing the last item D. Thus, from Figure l(b),
the support count of itemset {A, B, D} is 1. This search
is efficient because the nodes are sorted lexicographically.
However, the set of complete TrieITs require a huge amount
of memory space which scales up exponentially with N.

4.2 Support-Ordered Trie Itemset
This approach builds on the ideas presented in the paper

on DHP 191.  In that paper, it is discovered that generation of
large 2-itemsets is the main performance bottleneck. Using a
hash table, DHP is able to improve performance significantly
by reducing the size of the candidate 2-itemsets.

Similarly, this approach seeks to find a data structure that
allows for quick generation of large 2-itemsets without the
heavy processing and memory requirements of the previous
two structures. The solution is a 2-level support-ordered tree
which is called a SOTrieIT (Support-Ordered Trie Itemset).
It is unnecessary and inefficient to go beyond two levels be-
cause the memory requirements will far outweigh the com-
putation savings. This will be discussed in greater details in
section 7.

DEFINITION 2. A SOTrieIT is a complete TrieIT  with a
depth of 1; i.e., it consists only of a root node wi and some
child nodes. Moreover, all nodes in the forest of SOTrieIT
are sorted according to their support counts in descending
order from the left. I

In constructing the set of SOTrieITs Y from a database
D, only 1-itemsets and 2-itemsets  X E P(T) of each trans-
action T E D are used to update the support counts in Y.
In other words, the set of SOTrieITs only keeps a record
of all I-itemsets  and 2-itemsets contained in a transaction.
The first-level nodes represent 1-itemsets while second-level
nodes represent 2-itemsets.  Henceforth, we shall use the
term SOTrieIT to denote a set of SOTrieITs.
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Figure 1: Resultant Complete TrieIT.

By keeping track of the support counts of all 1-itemsets
and 2-itemsets,  SOTrieIT allows both large 1-itemsets and
2-itemsets  to be found very quickly. This is because there
is no need to scan the database which could be very large.
Instead, only the small SOTrieIT is scanned. Moreover, as
the SOTrieIT is sorted according to the support counts of
the itemsets, only part of the structure needs to be scanned.
This feature is elaborated below in the discussion of the
RARM algorithm. Finally, the amount of pre-processing
work and memory needed are greatly reduced.

4.2.1 Example
Figure 2 represents the fully constructed SOTrieIT for the

example transaction database in Table 1. To illustrate how
nodes sre created, let us examine what happens when a
new transaction arrives. Note that only 1-itemsets and 2-
itemsets  are extracted from the transactions. The nodes
arc created in a similar manner as in the complete TrieITs.
When both transaction 100 and 200 arrive, the nodes cre-
ated are the same as those created for the complete TrieITs
as shown in Figures 2(a) and 2(b) because only 1-itemsets
and 2-itemsets  are extracted in both cases. However, notice
that in Figure 2(b), the node 2uc  under the ROOT node
comes before the node WA.  This is because the nodes are
sorted according to their support counts and WC has a higher
support count than WA.

When transaction 300 arrives, the following itemsets  are
extracted:  {A),  {B),  {Cl,  (4 J3,  {A, Cl,  {B,  C>

Unlike the situation for the complete TrieITs, the itemset
{A, B, C} is not extracted from the transaction. Figure 2(c)
shows the resultant SOTrieIT when this transaction is pro-
cessed. When transaction 400 arrives, the following itemsets
are extracted: {Al,  {Bl,  {Cl,  {Dl,  {A, Bl,  {A, Cl,  -9%  Dl,
{B, Cl,  {B, Dl,  {C, D>

The SOTrieITs are updated in a similar fashion for trans-
action 400 as seen in Figure 2(d). The final resultant SOTrieIT
resembles the complete set of TrieITs except that it consists
of only three levels of nodes and that sibling nodes are sorted
according to their support counts.

4.3 Correctness
We need to show that with a SOTrieIT, the support counts

of all 1-itemsets and 2-itemsets  can be correctly obtained

without scanning the database. Let T, be a transaction of
size s and T, = {bl  , ba,  . . . , b,}. The I-itemsets  that are
extracted and used to build W are {bl},  {bz},  . . , {b,} and
the 2-itemsets  extracted are {b,, b,} where 0 < z < s and
x < y < s. These itemsets  update counts in the SOTrieITs
accordingly. Every itemset increments or decrements the
support count of its corresponding tree node depending on
whether the transaction is added or deleted.

At any point in time, W contains all the support counts
of all 1-itemsets and 2-itemsets  that appear in all the trans-
actions. Hence, there is no longer any need to scan the
database during the generation of large 1-itemsets and 2-
itemsets.

5. ALGORITHM RARM
In this section, the RARM algorithm that uses a SOTrieIT

is described.

5.1 Pre-processing
Figure 3 shows the pre-processing steps taken whenever

a transaction arrives. For every transaction that arrives,
l-itemsets and 2-itemsets  are first extracted from it. For
each itemset,  the SOTrieIT, denoted by Y, will be traversed
in order to locate the node that stores its support count.
Support counts of 1-itemsets and 2-itemsets  are stored in
first-level and second-level nodes respectively. Therefore,
this traversal requires at most two redirections which makes
it very fast. Y will then be sorted level-wise from left to right
according to the support counts of the nodes in descending
order. If such a node does not exist, it will be created and
inserted into Y accordingly. Similarly, Y is then sorted after
such an insertion.

5.2 Mining of large itemsets
Figure 4 shows the steps taken when the mining process

is started. The SOTrieIT, Y, is first traversed to discover
large l-itemsets and 2-itemsets.  In our approach, depth-first
search is used, starting from the leftmost first-level node. As
Y is sorted according to support counts, the traversal can
be stopped the moment a node is found not to satisfy the
minimum support threshold. After large 1-itemsets and 2-
itemsets  are found, the algorithm proceeds to discover other
larger itemsets  using the Apriori algorithm. Experiments in
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Figure 2: Resultant SOTrieIT.

1 Let Y be a set of SOTrieITs
2 for (k  = 1; L < 2; k++)  do begin
3 Obtain all k-itemsets of the transaction and

Store  them in Ck
4 foreach  itemset  X E Ck  do begin
5 Traverse Y to locate nodes along the path that

represents X
6 if such a set of nodes exists in Y then
7 Increment the support count of the leaf node
8 Sort updated node among siblings according

to its new support count in descending order
9 else
1 0 Create a new set of nodes with support

counts of 1 that represent a path to X
1 1 Insert them into Y according to their support

counts in descending order from the left
1 2 endif
1 3 endfor
14 endfor

Figure 3: Pre-processing Algorithm.

1 Let Nt be the qth child node of parent node p.
2 Let NC, be the number of child nodes under node 1
3 Let I, be the itemset  represented by node n.
4 for (x=1;  2 < NCROOT;  z++)  do begin
5 Let X = NEooT.
6 if ox 2 IDI  x 3%  then begin
7 Add Ix to Ll.
8 for (y=l;  y < NCx;  y++) do begin
9 if ‘T~,x  > IDI  x 3%  then
1 0 Add INx  to Lz.v
1 1 endfor
1 2 endif
13 endfor
14  Run Apriori from its third iteration to find the rest

of the large itemsets  from 3-itemsets  onwards.

Figure 4: Mining Algorithm.

Section 7 prove that the savings obtained during the genera-
tion of large 1-itemsets and 2-itemsets  are enough to greatly
improve its performance.

5.2.1 Example
To illustrate the mining algorithm, we use the same trans-

action database found in Table 1 and the SOTrieIT struc-
ture in Figure 2(d). Suppose the support threshold is set at
80%. Then the minimum support count to qualify an item-
set to be large is 4. Figure 5 shows the traversal path taken
in obtaining the large 1-itemsets and 2-itemsets.  The bold
numbers on the arrows denote the sequence with which the
SOTrieIT is traversed. The RARM algorithm stops travers-
ing the SOTrieIT at the third traversal when it encounters
the item A which has a support count of 3. This is because
all other nodes that come after first-level node A will have
a support count of 3 or less. Therefore, there will not be
any more large itemsets  in the rest of the SOTrieIT. The
algorithm terminates and the only large itemset  is {C} and

4 7 8



ROOT

2,21)
“(1) C(3) BP) D(l) C(3) D(l)

Figure 5: Traversal path of the SOTrieIT at a sup-
port threshold of 80%.

the total number of traversals is only three.

ROOT

2,21)
D(l) C(3) ‘W) ‘Xl) C(3) D(1)

Figure 6: Traversal path of the SOTrieIT at a sup-
port threshold of 75%.

For a support threshold of 75%,  the minimum support
count needed is 3. Figure 6 shows the traversal path taken
in obtaining the large 1-itemsets and 2-itemsets. During the
generation of the first two large itemsets, the moment a first-
level node with a support count lower than 3 is encountered,
the rest of its siblings and subtrees  are not scanned. How-
ever, when a second-level node is found not to have satisfied
the minimum support count, only its subsequent siblings
will be ignored. In this case, at the fifth traversal, when the
node that represent itemset  {A, B} is found to have a sup-
port count of less than 3, the node that represent itemset
{A, D} is ignored. The final large 1-itemsets and 2-itemsets
found are Li  = {{A}, {B}, {C}} and LZ = {{A, C}, {B, C}>
and the total number of traversals is nine.

6. TIME AND SPACE COMPLEXITY

6.1 Pre-processing
We discuss the time and space complexities of the pre-

processing phase in this section.
61.1 2i:me  Complexity

The amount of time to pre-process a transaction depends
on the amount of time to extract I-itemsets  and 2-itemsets
from the transaction, to traverse the SOTrieIT to increment
the support counts of the respective nodes, and to create new
nodes in the SOTrieIT for items that are not encountered
yet.

For a transaction of size s, only (‘Cl+ ‘Cz) itemsets  are
pre-processed. Hence, its complexity is O(s’).  For example,
when transaction 400 of Table 1 arrives, the following ten
itemsets  are extracted: {A}, {II},  {C}, {D},  {A, B}, {A, C},
(4 Dl, {B, Cl,  {B,  01,  {C, Dl

According to our formulation, this gives a total of & +
+$ = 4+6  = 10 itemsets  which is correct. As the SOTrieIT

is only two levels deep, it takes at most two links to reach
the desired node. Suppose it also takes one unit of time
to move over one link and update/create the node and one
unit of time to extract one itemset,  it will take a maximum
of 2 x (‘Cl+ ‘Cz) units of time to move to all the nodes
required by a transaction of size a.

61.2 Space Complexity
In a database with N unique items, there will be N first-

level nodes in the SOTrieIT. For each first-level node, since
the SOTrieIT is created in a trie-like manner, it will contain
only items that are lexicographically larger than itself. The
first-level node who has the largest number of child nodes is
the one which has the first position in a set of lexicons. It will
have N-l child nodes. Subsequent first-level nodes will have
one less child node than the previous one. Therefore, for N
unique items, a maximum of only C,“=, z nodes, inclusive of
both first-level and second-level nodes, are needed to store
the entire pre-processing information. Hence, its complexity
is O(N2).

6.2 Mining of large itemsets
The next section discusses the time complexity of the min-

ing phase as compared to that of Apriori. Space complexity
will not be mentioned because this phase also involves the
SOTrieIT whose space complexity is already discussed in the
previous section.

6.2.1 Time Complexity
To compare the time complexity of RARM and Apriori,

we shall focus only on the scanning process to obtain the
support counts of itemsets. This is enough to see the vast
improvement of RARM over Apriori.

For each pass of the Apriori algorithm, there is a need to
scan the entire database regardless of the desired support
threshold. Suppose the database is of size a and the average
size of each transaction is b.  Then, Apriori takes O(ab)  units
of time to scan the database at each pass.

For the first two passes of RARM, only the SOTrieIT Y
needs to be scanned. According to Section 6.1.2,  Y has
R x C,“=, x nodes and since each node has one link from its
parent, in the worst case, it will take at most 2 x RX Cr=‘=,  x
units of time to traverse the entire structure where N < a.
In addition, the time needed also depends on the desired
support threshold which would further reduce the number of
traversals. Therefore, the average total amount of scanning
time will be far less than O(ab).

7. PERFORMANCE EVALUATION
This section evaluates and compares the relative perfor-

mance of the Apriori and RARM algorithms by conducting
experiments on a Pentium-III machine with a CPU clock
rate of 1 GHz,  256 MB of main memory and running on a
Windows 2000 platform. The algorithms are implemented
in Java and hence large memory requirements of the Java
Virtual Machine prevented us from scaling up the experi-
ments. This issue will be tackled in future experiments.

The SOTrieIT structure is implemented using a combina-
tion of integer arrays and files. Implementation details are
omitted due to the lack of space. Despite extra file I/O re-
quirements, RARM maintains its efficient performance. De-
tailed analysis of the results is performed to explain the
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Parameter Meaning

1;;

Number of unique items
Number of transactions
Number of maximal potentially
large itemsets
Average size of transactions
Average size of maximal potentially
large  itemsets

Figure 7: Definition of Parameters.

improvements of RARM over Apriori. Figure 7 shows the
various parameters used and their meanings.

The method used for generating synthetic data is the same
as the one used in [2]. To describe an experiment, we use the
notation Tw.1z.Ny.D~  where w is the average size of trans-
actions, z is the average size of maximal potentially large
itemsets, y is the number of unique items and z is the size
of the database. The databases created are similar to those
used in [7]. The first one is T25.IlO.NlK.DlOK  which is de-
noted as D1 while the second one is T25.120.NlOK.DlOOK
which is denoted as Dz.

7.1 Comparison of RARM and Apriori
Figure 8 shows the execution times for the two different

databases of both Apriori and RARM. From the graphs, it
can be quickly observed that RARM outperforms Apriori in
all situations. In Figure 8(a), RARM maintains a steady
speed-up of at least 20 times for support thresholds ranging
from 3% to 1.5% in DI. However, when the support thresh-
old falls below 1.5%,  the speed-up is significantly reduced.
This is due to the fact that larger-sized frequent itemsets
exist and RARM uses the Apriori algorithm for discovering
large k-itemsets for k > 3. Hence, the computation savings
in the first two iterations are insignificant compared to the
huge computation costs in obtaining larger frequent item-
s e t s .

The situation changes dramatically in D2.  Figure 8(b)
uses a log scale for the time axis because of the vast dif-
ference between the execution times of RARM and Apriori.
RARM performs at least 70 times faster than Apriori for
support thresholds ranging from 3% to 1%. Its performance
peaks at a support threshold of 2% where it performs 120
times faster than Apriori. We cannot determine the exe-
cution time of Apriori for a support threshold of 0.5% be-
cause there is insufficient memory to hold the number of
candidate 2-itemsets.  RARM does not have this memory
problem because it can obtain large 2-itemsets  without gen-
erating candidate 2-itemsets.  The lowest support threshold
that allows us to compare the performance of the two algo-
rithms is 0.75% and at this threshold, RARM outperforms
Apriori by a factor of 47.

The vast improvement of RARM in D2 can be explained
by Figure 9 which shows the number of candidate k-itemsets
generated during the mining of D1 and D2 for a support
threshold of 0.75%. From Figure 9, it is obvious that the
main difference in candidate generation between DI and DZ
is in the generation of candidate 2-itemsets  and that DI has
larger-sized candidate itemsets. Thus, by eliminating the
need for candidate 2-itemset  generation, RARM achieves a
much greater speed-up in DZ as it contains more than twice
the number of candidate P-itemsets  as compared to DI.  As

Candidate ltemset Generation
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Figure 9: Size of candidate k-itemsets for D1 and D2
at a support threshold of 0.75%.

for higher support thresholds, RARM is able to outperform
Apriori by up to two orders of magnitude because in D2,
the maximum size of the large itemsets, k’,  is much lower
than that of Dr.  If k’ increases indefinitely, the perfor-
mance of RARM will eventually be reduced to that of Apri-
ori. However, we can conclude from the experiments that as
databases increase in size, k’ will decrease and thus RARM
will scale up well against Apriori.

7.2 Comparison of RARM and FP-growth
Due to the lack of time, FP-growth is not implemented

but its performance against RARM can be evaluated using
Apriori as a basis for relative comparisons. The experiments
conducted in [7] reported an overall improvement of only an
order of magnitude for FP-growth over Apriori. In addi-
tion, the performance of FP-growth is on par with Apriori
for support thresholds ranging from 3% to 1.5% in D2.  The
poor performance of FP-growth can be attributed to the
cost in recursively constructing FP-trees. Hence, significant
speed-ups can only be noticed in lower support thresholds
when Apriori cannot cope with the exponential increase in
candidate itemset  generation. This is undesirable because
we want to mine databases at a wide variety of support
thresholds quickly instead of only at low support thresholds.
RARM overcomes this limitation of FP-growth and consis-
tently outperforms Apriori at all support thresholds and ex-
periments show that it can even perform up to two orders
of magnitude faster than Apriori. In future, FP-growth will
be implemented to directly access its performance against
RARM but in this case, it is clear that RARM will outper-
form FP-growth.

7.3 Pre-processing Requirements
As pre-processing is carried on a transaction at the mo-

ment it arrives in the database, it is distributive by na-
ture and thus will not burden a system excessively. RARM
spends an average of only 22 ms and 48 ms in pre-processing
a single transaction found in D1 and D2 respectively. This
amount of time is insignificant considering that it will result
in major speed-ups in the mining process. This requirement
should not be taken into consideration in comparing the
performance of RARM and Apriori because pre-processing
is done outside of the actual mining process itself.
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Figure 8: Execution times for two databases of the form T2ok.Ny.D~  where w is the average size of trans-
actions, 2 is the average size of maximal potentially large itemsets, y is the number of unique items and z is
the size of the database, at varying support thresholds.

7.4 Storage Requirements
The SOTrieIT structure resides in both memory and files.

As primitive integer arrays are employed in memory for stor-
ing the first-level nodes, the SOTrieIT only takes up only 2
KB and 14 KB in D1  and DZ  respectively. Second-level
nodes grow exponentially with respect to N as seen in Sec-
tion 6.1.2 and as such, they cannot be stored in memory.
Instead, they are stored in files which are named after the
labels of their parents. These files take up approximately 2
MB and 53 MB for D1  and Dz respectively. Therefore, it
can be concluded that by distributing the SOTrieIT struc-
ture among memory and files, scalability is ensured as hard
disk space is currently in the realm of tens of gigabytes.

8. CONCLUSIONS
The rising popularity of electronic commerce presents new

challenges to association rule mining. Due to the easy avail-
ability of huge amount of transactional data, there is a
greater need for faster and scalable algorithms to exploit this
knowledgebase. We have proposed a new algorithm called
RARM which uses an efficient trie-like structure known as
the SOTrieIT. By eliminating the need for candidate l-
itemset  and 2-itemset  generation, RARM is able to achieve
significant speed-ups. Experiments have shown that RARM
is much faster than Apriori and FP-growth. It also main-
tains its sharp edge at various support thresholds and is scal-
able. Though there are additional pre-processing and stor-
age requirements, they are both insignificant and worthwhile
considering the immense speed-up they can help achieve.

The SOTrieIT is a simple and yet highly dynamic struc-
ture which can be put to greater use in association rule min-
ing. Due to the dynamic nature of the Internet, current
algorithms are inadequate to handle web-based databases.
The SOTrieIT may be a good tool to impart dynamism into
static algorithms. Hence, methods and algorithms to exploit
the SOTrieIT will be explored in future work.
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