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AbstractÐAssociation rule discovery has emerged as an important problem in knowledge discovery and data mining. The association

mining task consists of identifying the frequent itemsets and then, forming conditional implication rules among them. In this paper, we

present efficient algorithms for the discovery of frequent itemsets which forms the compute intensive phase of the task. The algorithms

utilize the structural properties of frequent itemsets to facilitate fast discovery. The items are organized into a subset lattice search

space, which is decomposed into small independent chunks or sublattices, which can be solved in memory. Efficient lattice traversal

techniques are presented which quickly identify all the long frequent itemsets and their subsets if required. We also present the effect

of using different database layout schemes combined with the proposed decomposition and traversal techniques. We experimentally

compare the new algorithms against the previous approaches, obtaining improvements of more than an order of magnitude for our test

databases.

Index TermsÐAssociation rules, frequent itemsets, equivalence classes, maximal cliques, lattices, data mining.
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1 INTRODUCTION

THE association mining task is to discover a set of
attributes shared among a large number of objects in a

given database. For example, consider the sales database of
a bookstore, where the objects represent customers and the
attributes represent books. The discovered patterns are the
set of books most frequently bought together by the
customers. An example could be that, ª40 percent of the
people who buy Jane Austen's Pride and Prejudice also buy
Sense and Sensibility.º The store can use this knowledge for
promotions, shelf placement, etc. There are many potential
application areas for association rule technology which
include catalog design, store layout, customer segmenta-
tion, telecommunication alarm diagnosis, and so on.

The task of discovering all frequent associations in very
large databases is quite challenging. The search space is
exponential in the number of database attributes and with
millions of database objects the problem of I/O minimiza-
tion becomes paramount. However, most current ap-
proaches are iterative in nature, requiring multiple
database scans, which is clearly very expensive. Some of
the methods, especially those using some form of sampling,
can be sensitive to the data-skew which can adversely affect
performance. Furthermore, most approaches use very
complicated internal data structures which have poor
locality and add additional space and computation over-
heads. Our goal is to overcome all of these limitations.

In this paper, we present new algorithms for discovering
the set of frequent attributes (also called itemsets). The key
features of our approach are as follows:

1. We use a vertical tid-list database format where we
associate with each itemset a list of transactions in
which it occurs. We show that all frequent itemsets
can be enumerated via simple tid-list intersections.

2. We use a lattice-theoretic approach to decompose
the original search space (lattice) into smaller pieces
(sublattices) which can be processed independently
in main-memory. We propose two techniques for
achieving the decomposition: prefix-based and
maximal-clique-based partition.

3. We decouple the problem decomposition from
pattern search. We propose three new search
strategies for enumerating the frequent itemsets
within each sublattice: bottom-up, top-down, and
hybrid search.

4. Our approach roughly requires only a few database
scans, minimizing the I/O costs.

We present six new algorithms combining the features
listed above, depending on the database format, the
decomposition technique, and the search procedure used.
These include Eclat (Equivalence CLAss Transformation),
MaxEclat, Clique, MaxClique, TopDown, and AprClique. Our
new algorithms not only minimize I/O costs by making
only a small number of database scans, but also minimize
computation costs by using efficient search schemes. The
algorithms are particularly effective when the discovered
frequent itemsets are long. Our tid-list-based approach is
also insensitive to data-skew. In fact, the MaxEclat and
MaxClique algorithms exploit the skew in tid-lists (i.e., the
support of the itemsets) to reorder the search, so that the
long frequent itemsets are first listed. Furthermore, the use
of simple intersection operations makes the new algorithms
an attractive option for direct implementation in database
systems using SQL. With the help of an extensive set of
experiments, we show that the best new algorithm im-
proves over current methods by over an order of
magnitude. At the same time, the proposed techniques
retain linear scalability in the number of transactions in the
database.

The rest of this paper is organized as follows: In Section 2,
we describe the association discovery problem. We look at
related work in Section 3. In Section 4, we develop our
lattice-based approach for problem decomposition and
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pattern search. Section 5 describes our new algorithms.

Some previous methods, used for experimental comparison,

are described in more detail in Section 6. An experimental

study is presented in Section 7 and we conclude in Section 8.

Some mining complexity results for frequent itemsets and

their link to graph-theory are highlighted in Appendix A.

2 PROBLEM STATEMENT

The association mining task, first introduced in [1], can be

stated as follows: Let I be a set of items and D a

database of transactions, where each transaction has a

unique identifier (tid) and contains a set of items. A set of

items is also called an itemset. An itemset with k items is

called a k-itemset. The support of an itemset X, denoted

��X�, is the number of transactions in which it occurs as

a subset. A k length subset of an itemset is called a

k-subset. An itemset is maximal if it is not a subset of any

other itemset. An itemset is frequent if its support is more

than a user-specified minimum support (min_sup) value.

The set of frequent k-itemsets is denoted F k.
An association rule is an expression A) B, where A and

B are itemsets. The support of the rule is given as ��A [B�
and the confidence as ��A [B�=��A� (i.e., the conditional

probability that a transaction contains B, given that it

contains A). A rule is confident if its confidence is more than

a user-specified minimum confidence (min_conf).
The data mining task is to generate all association rules

in the database, which have a support greater than min_sup,

i.e., the rules are frequent. The rules must also have

confidence greater than min_conf, i.e., the rules are con-

fident. This task can be broken into two steps [2]:

1. Find all frequent itemsets. This step is computation-
ally and I/O intensive. Given m items, there can be
potentially 2m frequent itemsets. Efficient methods
are needed to traverse this exponential itemset
search space to enumerate all the frequent itemsets.
Thus, frequent itemset discovery is the main focus of
this paper.

2. Generate confident rules. This step is relatively
straightforwardÐrules of the form XnY ) Y ,
where Y � X, are generated for all frequent
itemsets X, provided the rules have at least
minimum confidence.

Consider an example bookstore sales database shown in
Fig. 1. There are five different items (names of authors the
bookstore carries), i.e., I � fA;C;D; T ;Wg, and the data-
base consists of six customers who bought books by these
authors. Fig. 1 shows all the frequent itemsets that are
contained in at least three customer transactions, i.e.,
min sup � 50 percent. It also shows the set of all association
rules with min conf � 100 percent. The itemsets ACTW
and CDW are the maximal frequent itemsets. Since all other
frequent itemsets are subsets of one of these two maximal
itemsets, we can reduce the frequent itemset search
problem to the task of enumerating only the maximal
frequent itemsets. On the other hand, for generating all the
confident rules, we need the support of all frequent
itemsets. This can be easily accomplished once the maximal
elements have been identified by making an additional
database pass and gathering the support of all uncounted
subsets.

3 RELATED WORK

Several algorithms for mining associations have been
proposed in the literature [1], [2], [6], [15], [19], [20], [21],
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[23], [26], [27]. The Apriori algorithm [2] is the best known

previous algorithm and it uses an efficient candidate

generation procedure, such that only the frequent itemsets

at a level are used to construct candidates at the next level.

However, it requires multiple database scans, as many as

the longest frequent itemset. The DHP algorithm [23] tries

to reduce the number of candidates by collecting approx-

imate counts in the previous level. Like Apriori it requires as

many database passes as the longest itemset. The Partition

algorithm [26] minimizes I/O by scanning the database

only twice. It partitions the database into small chunks

which can be handled in memory. In the first pass, it

generates the set of all potentially or locally frequent

itemsets and, in the second pass, it counts their global

support. Partition may enumerate too many false positives

in the first pass, i.e., itemsets locally frequent in some

partition but not globally frequent. If this local frequent set

does not fit in memory, then additional database scans will

be required. The DLG [28] algorithm uses a bit-vector per-

item, noting the tids where the item occurred. It generates

frequent itemsets via logical AND operations on the bit-

vectors. However, DLG assumes that the bit vectors fit in

memory, and thus, scalability could be a problem for

databases with millions of transactions. The DIC algorithm

[6] dynamically counts candidates of varying length as the

database scan progresses, and thus, is able to reduce the

number of scans over Apriori. Another way to minimize the

I/O overhead is to work with only a small sample of the

database. An analysis of the effectiveness of sampling for

association mining was presented in [29] and [27] presents

an exact algorithm that finds all rules using sampling. The

AS-CPA algorithm and its sampling versions [20] build on

top of Partition and produce a much smaller set of

potentially frequent candidates. It requires at most two

database scans. Approaches using only general-purpose

DBMS systems and relational algebra operations have also

been studied [14], [15]. Detailed architectural alternatives in

the tight-integration of association mining with DBMS were

presented in [25]. They also pointed out the benefits of

using the vertical database layout.
All the above algorithms generate all possible frequent

itemsets. Methods for finding the maximal elements

include: All-MFS [12], which is a randomized algorithm to

discover maximal frequent itemsets. The Pincer-Search

algorithm [19] not only constructs the candidates in a

bottom-up manner like Apriori, but also starts a top-down

search at the same time. This can help in reducing the

number of database scans. MaxMiner [5] is another

algorithm for finding the maximal elements. It uses efficient

pruning techniques to quickly narrow the search space. Our

new algorithms range from those that generate all the

frequent itemsets to hybrid schemes that generate some

maximal along with the remaining itemsets. It is worth

noting that since the enumeration task is computationally

challenging, a number of parallel algorithms have also been

proposed [3], [7], [13], [31]

4 ITEMSET ENUMERATION: LATTICE-BASED

APPROACH

Before embarking on the algorithm description, we will
briefly review some terminology from lattice theory (see [8]
for a good introduction).

Definition 1. Let P be a set. A partial order on P is a binary
relation � , such that for all X;Y ; Z 2 P , the relation is:

1. Reflexive: X � X.
2. Antisymmetric: X � Y and Y � X, implies X � Y .
3. Transitive: X � Y and Y � Z, implies X � Z.

The set P with the relation � is called an ordered set.

Definition 2. Let P be an ordered set and let X;Z; Y 2 P . We
say X is covered by Y , denoted X jÿÿ Y , if X < Y and
X � Z < Y , implies Z � X, i.e., if there is no element Z of P
with X < Z < Y .

Definition 3. Let P be an ordered set and let S � P . An element
X 2 P is an upper bound (lower bound) of S if s � X
(s � X) for all s 2 S. The least upper bound, also called join,
of S is denoted as

W
S, and the greatest lower bound, also

called meet, of S is denoted as
V
S. The greatest element of P ,

denoted >, is called the top element, and the least element of
P , denoted ?, is called the bottom element.

Definition 4. Let L be an ordered set. L is called a join (meet)
semilattice if X _ Y (X ^ Y ) exists for all X;Y 2 L. L is
called a lattice if it is both a join and meet semilattice, i.e., if
X _ Y and X ^ Y exist for all pairs of elements X;Y 2 L. L
is a complete lattice if

W
S and

V
S exist for all subsets

S � L. A ordered set M � L is a sublattice of L if X;Y 2
M implies X _ Y 2M and X ^ Y 2M.

For set S, the ordered set P�S�, the power set of S, is a
complete lattice in which join and meet are given by union
and intersection, respectively:_

fAi j i 2 Ig �
[
i2I
Ai

^
fAi j i 2 Ig �

\
i2I
Ai:

The top element of P�S� is > � S, and the bottom
element of P�S� is ? � fg. For any L � P�S�, L is called a
lattice of sets if it is closed under finite unions and
intersections, i.e., �L;�� is a lattice with the partial order
specified by the subset relation � , X _ Y � X [ Y , and
X ^ Y � X \ Y .

Fig. 2 shows the powerset latticeP�I� of the set of items in
our example database I � fA;C;D; T ;Wg. Also, shown are
the frequent (gray circles) and maximal frequent itemsets
(black circles). It can be observed that the set of all frequent
itemsets forms a meet semilattice since it is closed under the
meet operation, i.e., for any frequent itemsets X, and Y , X \
Y is also frequent. On the other hand, it doesn't form a join
semilattice, since X and Y frequent, doesn't imply X [ Y is
frequent. It can be mentioned that the infrequent itemsets
form a join semilattice.

Lemma 1. All subsets of a frequent itemsets are frequent.

The above lemma is a consequence of the closure under
meet operation for the set of frequent itemsets. As a
corollary, we get that all supersets of an infrequent itemset
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are infrequent. This observation forms the basis of a very

powerful pruning strategy in a bottom-up search procedure

for frequent itemsets, which has been leveraged in many

association mining algorithms [2], [23], [26]. Namely, only

the itemsets found to be frequent at the previous level need

to be extended as candidates for the current level. However,

the lattice formulation makes it apparent that we need not

restrict ourselves to a purely bottom-up search.

Lemma 2. The maximal frequent itemsets uniquely determine all

frequent itemsets.

This observation tells us that our goal should be to devise

a search procedure that quickly identifies the maximal

frequent itemsets. In the following sections, we will see how

to do this efficiently.

4.1 Support Counting

Definition 5. A lattice L is said to be distributive if for all

X;Y ; Z 2 L, X ^ �Y _ Z� � �X ^ Y � _ �X ^ Z�.
Definition 6. Let L be a lattice with bottom element ?. Then

X 2 L is called an atom if ? jÿÿ X, i.e., X covers ?. The set

of atoms of L is denoted by A�L�.
Definition 7. A lattice L is called a Boolean lattice if

1. It is distributive.
2. It has > and ? elements.
3. Each member X of the lattice has a complement.

We begin by noting that the powerset lattice P�I�, on the

set of database items I , is a Boolean lattice with the

complement of X 2 L given as InX. The set of atoms of

the powerset lattice corresponds to the set of items, i.e.,

A�P�I�� � I . We associate with each atom (database item)

X its tid-list, denoted L�X�, which is a list of all transaction

identifiers containing the atom. Fig. 3 shows the tid-lists for

the atoms in our example database. For example, consider

atom A. Looking at the database in Fig. 3, we see that A

occurs in transactions 1, 3, 4, and 5. This forms the tid-list

for atom A.

Lemma 3. ([8]) For a finite Boolean lattice L, with X 2 L,

X � WfY 2 A�L� j Y � Xg.
In other words, every element of a Boolean lattice is given
as a join of a subset of the set of atoms. Since the powerset

lattice P�I� is a Boolean lattice, with the join operation
corresponding to set union, we get

Lemma 4. For any X 2 P�I�, let

J � fY 2 A�P�I�� j Y � Xg:
Then X � SY 2J Y , and ��X� �j TY 2J L�Y � j .

The above lemma states that any itemset can be obtained

as a join of some atoms of the lattice, and the support of the
itemset can be obtained by intersecting the tid-list of the

atoms. We can generalize this lemma to a set of itemsets:

Lemma 5. For any X 2 P�I�, let X � SY 2J Y . Then

��X� �j TY 2J L�Y � j .

This lemma says that if an itemset is given as a union of a

set of itemsets in J , then its support is given as the
intersection of tid-lists of elements in J . In particular, we

can determine the support of any k-itemset by simply
intersecting the tid-lists of any two of its �kÿ 1� length

subsets. A simple check on the cardinality of the resulting
tid-list tells us whether the new itemset is frequent or not.

Fig. 4 shows this process pictorially. It shows the initial
database with the tid-list for each item (i.e., the atoms). The

intermediate tid-list for CD is obtained by intersecting the

lists of C and D, i.e., L�CD� � L�C� \ L�D�. Similarly,
L�CDW � � L�CD� \ L�CW�, and so on. Thus, only the

lexicographically first two subsets at the previous level are
required to compute the support of an itemset at any level.

Lemma 6. Let X and Y be two itemsets, with X � Y . Then

L�X� � L�Y �.
Proof. Follows from the definition of support. tu

This lemma states that if X is a subset of Y , then the

cardinality of the tid-list of Y (i.e., its support) must be less
than or equal to the cardinality of the tid-list of X. A

practical and important consequence of the above lemma is
that the cardinalities of intermediate tid-lists shrink as we

move up the lattice. This results in very fast intersection and
support counting.
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4.2 Lattice Decomposition: Prefix-Based Classes

If we had enough main-memory, we could enumerate all
the frequent itemsets by traversing the powerset lattice, and
performing intersections to obtain itemset supports. In
practice, however, we have only a limited amount of main-
memory and all the intermediate tid-lists will not fit in
memory. This brings up a natural question: Can we
decompose the original lattice into smaller pieces such that
each portion can be solved independently in main-memory?
We address this question below:

Definition 8. Let P be a set. An equivalence relation on P is a

binary relation � such that for all X;Y ; Z 2 P , the relation

is:

1. Reflexive: X � X.
2. Symmetric: X � Y implies Y � X.
3. Transitive: X � Y and Y � Z, implies X � Z.

The equivalence relation partitions the set P into disjoint

subsets called equivalence classes. The equivalence class of

an element X 2 P is given as �X� � fY 2 P j X � Y g.

Define a function

p : P�I� �N 7!P�I�;
where p�X; k� � X�1 : k�, the k length prefix of X. Define

an equivalence relation �k on the lattice P�I� as follows:

8X;Y 2 P�I�; X ��k Y , p�X; k� � p�Y ; k�:
That is, two itemsets are in the same class if they share a

common k length prefix. We therefore call �k a prefix-based

equivalence relation.
Fig. 5a shows the lattice induced by the equivalence

relation �1 on P�I�, where we collapse all itemsets with a

common 1 length prefix into an equivalence class. The

resulting set or lattice of equivalence classes is
f�A�; �C�; �D�; �T �; �W �g.
Lemma 7. Each equivalence class �X��k induced by the

equivalence relation �k is a sublattice of P�I�.
Proof. Let U and V be any two elements in the class �X�, i.e.,
U; V share the common prefix X. U _ V � U [ V � X
implies that U _ V 2 �X�, and U ^ V � U \ V � X im-
plies that U ^ V 2 �X�. Therefore, �X��k is a sublattice of
P�I�. tu

Each �X��1
is itself a Boolean lattice with its own set of

a t o m s . F o r e x a m p l e , t h e a t o m s o f �A��1
a r e

fAC;AD;AT;AWg, and the top and bottom elements are
> � ACDTW , and ? � A. By the application of Lemma 4
and Lemma 5, we can generate all the supports of the
itemsets in each class (sublattice) by intersecting the tid-list
of atoms or any two subsets at the previous level. If there is
enough main-memory to hold temporary tid-lists for each
class, then we can solve each �X��1

independently. Another
interesting feature of the equivalence classes is that the links
between classes denote dependencies. That is to say, if we
want to prune an itemset if there exists at least one
infrequent subset (see Lemma 1), then we have to process
the classes in a specific order. In particular, we have to solve
the classes from bottom to top, which corresponds to a
reverse lexicographic order, i.e., we process �W �, then �T �,
followed by �D�, then �C�, and finally �A�. This guarantees
that all subset information is available for pruning.

In practice, we have found that the one level decom-
position induced by �1 is sufficient. However, in some cases,
a class may still be too large to be solved in main-memory.
In this scenario, we apply recursive class decomposition.
Let us assume that �A� is too large to fit in main-memory.
Since �A� is itself a Boolean lattice, it can be decomposed
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using �2. Fig. 5b shows the equivalence class lattice induced
by applying �2 on �A�, where we collapse all itemsets with a
common 2 length prefix into an equivalence class. The
resulting set of classes are f�AC�; �AD�; �AT �; �AW �g. Like
before, each class can be solved independently, and we can
solve them in reverse lexicographic order to enable subset
pruning. The final set of independent classes obtained by
applying �1 on P�I� and �2 on �A� is shown in Fig.5c. As
before, the links show the pruning dependencies that exist
among the classes. Depending on the amount of main-
memory available, we can recursively partition large classes
into smaller ones until each class is small enough to be
solved independently in main-memory.

4.3 Search for Frequent Itemsets

In this section, we discuss efficient search strategies for
enumerating the frequent itemsets within each class. The

actual pseudocode and implementation details will be
discussed in Section 5.

4.3.1 Bottom-Up Search

The bottom-up search is based on a recursive decomposi-
tion of each class into smaller classes induced by the
equivalence relation �k. Fig. 6 shows the decomposition of
�A��1

into smaller classes and the resulting lattice of
equivalence classes. Also shown are the atoms within each
class, from which all other elements of a class can be
determined. The equivalence class lattice can be traversed
in either depth-first or breadth-first manner. In this paper,
we will only show results for a breadth-first traversal, i.e.,
we first process the classes f�AC�; �AT �; �AW �g, followed by
the classes f�ACT �; �ACW �; �ATW �g, and finally �ACTW �.
For computing the support of any itemset, we simply
intersect the tid-lists of two of its subsets at the previous
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level. Since the search is breadth-first, this technique
enumerates all frequent itemsets.

4.3.2 Top-Down Search

The top-down approach starts with the top element of the
lattice. Its support is determined by intersecting the tid-lists
of the atoms. This requires a k-way intersection if the top
element is a k-itemset. The advantage of this approach is
that if the maximal element is fairly large, then one can
quickly identify it and one can avoid finding the support of
all its subsets. The search starts with the top element. If it is
frequent, we are done. Otherwise, we check each subset at
the next level. This process is repeated until we have
identified all minimal infrequent itemsets. Fig. 7 depicts the
top-down search. This scheme enumerates only the max-
imal frequent itemsets within each sublattice. However, the
maximal elements of a sublattice may not be globally
maximal. It can, thus, generate some nonmaximal itemsets.
The search starts with the top element ACDTW . Since it is
infrequent, we have to check each of its four length 4
subsets. Out of these only ACTW is frequent, so we mark
all its subsets as frequent as well. We then examine the
unmarked length 3 subsets of the three infrequent subsets.
The search stops when AD, the minimal infrequent itemset,
has been identified.

4.3.3 Hybrid Search

The hybrid scheme is based on the intuition that the greater
the support of an frequent itemset the more likely it is to be
a part of a longer frequent itemset. There are two main steps
in this approach. We begin with the set of atoms of the class
sorted in descending order based on their support. The first
hybrid phase starts by intersecting the atoms one at a time,
beginning with the atom with the highest support, generat-
ing longer and longer frequent itemsets. The process stops
when an extension becomes infrequent. We then enter the
second bottom-up phase. The remaining atoms are com-
bined with the atoms in the first set, in a breadth-first
fashion, described above to generate all other frequent
itemsets. Fig. 8 illustrates this approach (just for this case, to

better show the bottom-up phase, we have assumed that
AD and ADW are also frequent). The search starts by
reordering the 2-itemsets according to support, the most
frequent first. We combine AC and AW to obtain the
frequent itemset ACW . We extend it with the next pair AT
to get ACTW . Extension by AD fails. This concludes the
hybrid phase, having found the maximal set ACTW . In the
bottom-up phase, AD is combined with all previous pairs to
ensure a complete search, producing the equivalence class
�AD�, which can be solved using a bottom-up search. This
hybrid search strategy requires only two-way intersections.
It enumerates the ªlongº maximal frequent itemsets
discovered in the hybrid phase, and also the nonmaximal
ones found in the bottom-up phase. Another modification
of this scheme is to recursively substitute the second
bottom-up search with a hybrid search so that mainly the
maximal frequent elements are enumerated.

4.4 Generating Smaller Classes: Maximal Clique
Approach

In this section, we show how to produce smaller sublattices
or equivalence classes compared to the pure prefix-based
approach by using additional information. Smaller sub-
lattices have fewer atoms and can save unnecessary
intersections. For example, if there are k atoms, then we
have to perform k

2

ÿ �
intersections for the next level in the

bottom-up approach. Fewer atoms, thus, lead to fewer
intersections in the bottom-up search. Fewer atoms also
reduce the number of intersections in the hybrid scheme
and lead to smaller maximum element size in the top-down
search.

Definition 9. Let P be a set. A pseudoequivalence relation

on P is a binary relation � such that for all X;Y 2 P , the
relation is:

1. Reflexive: X � X.
2. Symmetric: X � Y implies Y � X.
The pseudoequivalence relation partitions the set P into

possibly overlapping subsets called pseudoequivalence
classes.

Definition 10. A graph consists of a set of elements V called
vertices, and a set of lines connecting pairs of vertices, called
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the edges. A graph is complete if there is an edge between all
pairs of vertices. A complete subgraph of a graph is called a
clique.

Let F k denote the set of frequent k-itemsets. Define an
k-association graph, given as Gk � �V ;E�, with the vertex set
V � fX j X 2 F 1g, and edge set

E �f�X;Y � j X;Y 2 V and 9 Z 2 F�k�1�;

such that X;Y � Zg:
Let Mk denote the set of maximal cliques in Gk. Fig. 9

shows the association graph G1 for the example F 2 shown.
Its maximal clique set M1 � f1235; 1258; 1287; 13456; 1568g.

Define a pseudoequivalence relation �k on the lattice
P�I� as follows:

8X;Y 2 P�I�; X ��k Y , 9 C 2Mk

such that

X;Y � C and p�X; k� � p�Y ; k�:
That is, two itemsets are related, i.e, they are in the same

pseudoclass, if they are subsets of the same maximal clique
and they share a common prefix of length k. We therefore
call �k a maximal-clique-based pseudoequivalence relation.

Lemma 8. Each pseudoclass �X��k induced by the pseudoequi-
valence relation �k is a sublattice of P�I�.

Proof. Let U and V be any two elements in the class �X�, i.e.,
U; V share the common prefix X and there exists a
maximal clique C 2Mk such that U; V � C. Clearly,
U [ V � C, and U \ V � C. Furthermore, U _ V � U [
V � X implies that U _ V 2 �X�, and U ^ V � U \ V � X
implies that U ^ V 2 �X�. tu

Thus, each pseudoclass �X��1
is a Boolean lattice, and the

supports of all elements of the lattice can be generated by
applying Lemma 4 and Lemma 5, on the atoms, and using
any of the three search strategies described above.

Lemma 9. Let @k denote the set of pseudoclasses of the maximal-
clique-based relation �k. Each pseudoclass �Y ��k induced by the
prefix-based relation �k is a subset of some class �X��k induced
by �k. Conversely, each �X��k , is the union of a set of
pseudoclasses 	, given as �X��k �

Sf�Z��k j Z 2 	 � @kg.
Proof. Let ÿ�X� denote the neighbors of X in the graph Gk.

Then, �X��k � fZ j X � Z � fX;ÿ�X�gg. In other words,
�X� consists of elements with the prefixX and extended by
all possible subsets of the neighbors of X in the graph Gk.
Since any clique Y is a subset of fY ;ÿ�Y �g, we have that
�Y ��k � �X��k , whereY is a prefix ofX. On the other hand, it
is easy to show that �X��k �

Sf�Y ��k j Y is a prefix of Xg.tu

This lemma states that each pseudoclass of �k is a
refinement of (i.e., is smaller than) some class of �k. By
using the relation �k instead of �k, we can therefore,
generate smaller sublattices. These sublattices require less
memory, and can be processed independently using any of
the three search strategies described above. Fig. 9 contrasts
the classes (sublattices) generated by �1 and �1. It is
apparent that �1 generates smaller classes. For example,
the prefix class �1� � 12345678 is one big class containing all
the elements, while the maximal-clique classes for
�1� � f1235; 1258; 1278; 13456; 1568g. Each of these classes
is much smaller than the prefix-based class. The smaller
classes of �k come at a cost, since the enumeration of
maximal cliques can be computationally expensive. For
general graphs, the maximal clique decision problem is
NP-Complete [10]. However, the k-association graph is
usually sparse and the maximal cliques can be enumerated
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efficiently. As the edge density of the association graph
increases, the clique-based approaches may suffer.
�k should thus be used only when Gk is not too dense.
Some of the factors affecting the edge density include
decreasing support and increasing transaction size. The
effect of these parameters is studied in the experimental
section.

4.4.1 Maximal Clique Generation

We modified Bierstone's algorithm [22] for generating
maximal cliques in the k-association graph. For a class �x�,
and y 2 �x�, y is said to cover the subset of �x�, given by
cov�y� � �y� \ �x�. For each class C, we first identify its
covering set, given as

fy 2 C j cov�y� 6� ;; and cov�y� 6� cov�z�;
for any z 2 C; z < yg:

For example, consider the class �1�, shown in Fig. 9.
cov�2� � f3; 5; 7; 8g � �2�. Similarly, for our example,
cov�y� � �y�, for all y 2 �1�, since each �y� � �1�. The covering
set of �1� is given by the set f2; 3; 5g. The item 4 is not in the
covering set since, cov�4� � f5; 6g is a subset of
cov�3� � f4; 5; 6g. Fig. 10 shows the complete clique gen-
eration algorithm. Only the elements in the covering set
need to be considered while generating maximal cliques for
the current class (Step 3). We recursively generate the
maximal cliques for elements in the covering set for each
class. Each maximal clique from the covering set is prefixed
with the class identifier to obtain the maximal cliques for
the current class (Step 7). Before inserting the new clique, all
duplicates or subsets are eliminated. If the new clique is a
subset of any clique already in the maximal list, then it is
not inserted. The conditions for the above test are shown in
line 8.

Weak Maximal Cliques. For some database parameters, the

edge density of the k-association graph may be too high,

resulting in large cliques with significant overlap among

them. In these cases, not only does the clique generation

take more time, but redundant frequent itemsets may

also be discovered within each sublattice. To solve this

problem, we introduce the notion of weak maximality of

cliques. Given any two cliques X and Y , we say that they

are �-related, if jX\Y jjX[Y j � �, i.e., the ratio of the common

elements to the distinct elements of the cliques is greater

than or equal to the threshold �. A weak maximal clique,

Z � fX [ Y g, is generated by collapsing the two cliques

into one, provided they are �-related. During clique

generation, only weak maximal cliques are generated for

some user specified value of �. Note that for � � 1, we

obtain regular maximal cliques, while for � � 0, we

obtain a single clique. Preliminary experiments indicate

that using an appropriate value of �, most of the

overhead of redundant cliques can be avoided. We

found � � 0:5 to work well in practice.

5 ALGORITHM DESIGN AND IMPLEMENTATION

In this section, we describe several new algorithms for
efficient enumeration of frequent itemsets. The first step
involves the computation of the frequent items and
2-itemsets. The next step generates the sublattices (classes)
by applying either the prefix-based equivalence relation �1,
or the maximal-clique-based pseudoequivalence relation �1

on the set of frequent 2-itemsets F 2. The sublattices are then
processed one at a time in reverse lexicographic order in
main-memory using either bottom-up, top-down or hybrid
search. We will now describe these steps in some more
detail.

5.1 Computing Frequent 1-Itemsets and 2-Itemsets

Most of the current association algorithms [2], [6], [20], [23],
[26], [27] assume a horizontal database layout, such as the
one shown in Fig. 1, consisting of a list of transactions,
where each transaction has an identifier followed by a list of
items in that transaction. In contrast, our algorithms use the
vertical database format, such as the one shown in Fig. 3,
where we maintain a disk-based tid-list for each item. This
enables us to check support via simple tid-list intersections.

Computing F 1. Given the vertical tid-list database, all
frequent items can be found in a single database scan.
For each item, we simply read its tid-list from disk into
memory. We then scan the tid-list, incrementing the
item's support for each entry.

Computing F 2. Let N �j I j be the number of frequent
items, and A the average id-list size in bytes. A naive
implementation for computing the frequent 2-itemsets
requires N

2

ÿ �
id-list intersections for all pairs of items. The

amount of data read is A �N � �N ÿ 1�=2, which corre-
sponds to around N=2 data scans. This is clearly
inefficient. Instead of the naive method, one could use
two alternate solutions:

1. Use a preprocessing step to gather the counts of all
two-sequences above a user specified lower bound.
Since this information is invariant, it has to be
computed once, and the cost can be amortized over
the number of times the data is mined.

2. Perform a vertical to horizontal transformation
on-the-fly. This can be done quite easily. For each
item i, we scan its tid-list into memory. We insert
item i in an array indexed by tid for each t 2 L�i�.
For example, consider the id-list for item A, shown
in Fig. 3. We read the first tid 1, and then insert A in
the array indexed by transaction 1. We repeat this
process for all other items and their tidlists. Fig. 11
shows how the inversion process works after the
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addition of each item and the complete horizontal
database recovered from the vertical item tid-lists.
This process entails only a trivial amount of over-
head. In fact, Partition performs the opposite inver-
sion from horizontal to vertical tid-list format on-
the-fly, with very little cost. We also implemented
appropriate memory management by recovering
only a block of database at a time, so that the
recovered transactions fit in memory. Finally, we
optimize the computation of F 2 by directly updating
the counts of candidate pairs in an upper triangular
2D array.

The experiments reported in Section 7 use the horizontal
recovery method for computing F 2. As we shall demon-

strate, this inversion can be done quite efficiently.

5.2 Search Implementation

Bottom-Up Search. Fig. 12 shows the pseudocode for the

bottom-up search. The input to the procedure is a set of

atoms of a sublattice S. Frequent itemsets are generated

by intersecting the tid-lists of all distinct pairs of atoms

and checking the cardinality of the resulting tid-list. A

recursive procedure call is made with those itemsets

found to be frequent at the current level. This process is

repeated until all frequent itemsets have been enumer-

ated. In terms of memory management, it is easy to see

that we need memory to store intermediate tid-lists for at

most two consecutive levels. Once all the frequent

itemsets for the next level have been generated, the
itemsets at the current level can be deleted.

Since each sublattice is processed in reverse lexico-

graphic order, all subset information is available for itemset

pruning. For fast subset checking, the frequent itemsets can

be stored in a hash table. However, in our experiments on
synthetic data, we found pruning to be of little or no benefit.

This is mainly because of Lemma 6, which says that the tid-

list intersection is especially efficient for large itemsets.

Nevertheless, there may be databases where pruning is

crucial for performance and we can support pruning for

those datasets.

Top-Down Search. The code for top-down search is given

in Fig. 13. The search begins with the maximum element

R of the sublattice S. A check is made to see if the

element is already known to be frequent. If not, we

perform a k-way intersection to determine its support. If

it is frequent, then we are done. Otherwise, we
recursively check the support of each of its �kÿ 1�-
subsets. We also maintain a hash table HT of itemsets

known to be infrequent from previous recursive calls to

avoid processing sublattices that have already been

examined. In terms of memory management, the top-

down approach requires that only the tid-lists of the

atoms of a class be in memory.
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Hybrid Search. Fig. 14 shows the pseudocode for the

hybrid search. The input consists of the atom set S sorted in

descending order of support. The maximal phase begins by

intersecting atoms one at a time until no frequent extension

is possible. All the atoms involved in this phase are stored

in the set S1. The remaining atoms S2 � SnS1 enter the

bottom-up phase. For each atom in S2, we intersect it with

each atom in S1. The frequent itemsets form the atoms of a

new sublattice and are solved using the bottom-up search.

This process is then repeated for the other atoms of S2. The

maximal phase requires main-memory only for the atoms,

while the bottom-up phase requires memory for at most

two consecutive levels.

5.3 Number of Database Scans

Before processing each sublattice from the initial decom-

position, all the relevant item tid-lists are scanned into

memory. The tid-lists for the atoms (frequent 2-itemsets) of

each initial sublattice are constructed by intersecting the

item tid-lists. All the other frequent itemsets are enumer-

ated by intersecting the tid-lists of the atoms using the

different search procedures. If all the initial classes have

disjoint set of items, then each item's tid-list is scanned from

disk only once during the entire frequent itemset enumera-

tion process over all sublattices. In the general case, there

will be some degree of overlap of items among the different

sublattices. However, only the database portion corre-

sponding to the frequent items will need to be scanned,

which can be a lot smaller than the entire database.

Furthermore, sublattices sharing many common items can

be processed in a batch mode to minimize disk access. Thus,

we claim that our algorithms will usually require a small

number of database scans after computing F 2.

5.4 New Algorithms

The different algorithms that we propose are listed below.

These algorithms differ in the the search strategy used for

enumeration and in the relation used for generating

independent sublattices.

1. Eclat. It uses prefix-based equivalence relation �1

along with bottom-up search. It enumerates all
frequent itemsets.

2. MaxEclat. It uses prefix-based equivalence relation
�1 along with hybrid search. It enumerates the
ªlongº maximal frequent itemsets, and some non-
maximal ones.

3. Clique. It uses maximal-clique-based pseudoequi-
valence relation �1 along with bottom-up search. It
enumerates all frequent itemsets.

4. MaxClique. It uses maximal-clique-based pseudoe-
quivalence relation �1 along with hybrid search. It
enumerates the ªlongº maximal frequent itemsets,
and some nonmaximal ones.

5. TopDown. It uses maximal-clique-based pseudoe-
quivalence relation �1 along with top-down search.
It enumerates only the maximal frequent itemsets.
Note that for top-down search, using the larger
sublattices generated by �1 is not likely to be
efficient.

6. AprClique. It uses maximal-clique-based pseudoe-
quivalence relation �1. However, unlike the algo-
rithms described above, it uses horizontal data
layout. It has two main steps:

a. All possible subsets of the maximum element in
each sublattice are generated and inserted in
hash trees [2], avoiding duplicates. There is one
hash tree for each length, i.e., a k-subset is
inserted in the tree Ck. An internal node of the
hash tree at depth d contains a hash table whose
cells point to nodes at depth d� 1. All the
itemsets are stored in the leaves. The insertion
procedure starts at the root, and hashing on
successive items, inserts a candidate in a leaf.

b. The support counting step is similar to the
Apriori approach. For each transaction in the
database t 2 D, we form all possible k-subsets.
We then search that subset in Ck and update the
count if it is found.

The database is thus scanned only once, and all frequent

itemset are generated. The pseudocode is shown in Fig. 15.
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6 THE APRIORI AND PARTITION ALGORITHMS

We now discuss Apriori and Partition in some more detail
since we will experimentally compare our new algorithms
against them.

Apriori Algorithm. Apriori [2] is an iterative algorithm that
counts itemsets of a specific length in a given database
pass. The process starts by scanning all transactions in
the database and computing the frequent items. Next, a
set of potentially frequent candidate 2-itemsets is formed
from the frequent items. Another database scan is made
to obtain their supports. The frequent 2-itemsets are
retained for the next pass and the process is repeated
until all frequent itemsets have been enumerated. The
complete algorithm is shown in Fig. 16. We refer the
reader to [2] for additional details.

There are three main steps in the algorithm:

1. Generate candidates of length k from the frequent
�kÿ 1� length itemsets, by a self join on F kÿ1. For
example, if

F 2 � fAB;AC;AD;AE;BC;BD;BEg:
Then

C3 � fABC;ABD;ABE;ACD;ACE;ADE;ÿ
BCD;BCE;BDEg:

2. Prune any candidate with at least one infrequent
subset. As an example, ACD will be pruned since
CD is not frequent. After pruning, we get a new set
C3 � fABC;ABD;ABEg.

3. Scan all transactions to obtain candidate supports.
The candidates are stored in a hash tree to facilitate
fast support counting (note: the second iteration is
optimized by using an array to count candidate pairs
of items, instead of storing them in a hash tree).

Partition Algorithm. Partition [26] logically divides the
horizontal database into a number of nonoverlapping
partitions. Each partition is read, and vertical tid-lists are
formed for each item, i.e., list of all tids where the item
appears. Then, all locally frequent itemsets are generated
via tid-list intersections. All locally frequent itemsets are

merged and a second pass is made through all the
partitions. The database is again converted to the vertical
layout and the global counts of all the chosen itemsets
are obtained. The size of a partition is chosen so that it
can be accommodated in main-memory. Partition, thus,
makes only two database scans. The key observation
used is that a globally frequent itemset must be locally
frequent in at least one partition. Thus, all frequent
itemsets are guaranteed to be found.

7 EXPERIMENTAL RESULTS

Our experiments used a 200MHz Sun Ultra-2 workstation
with 384MB main memory. We used different synthetic
databases that have been used as benchmark databases for
many association rules algorithms [1], [2], [6], [15], [19], [20],
[23], [26], [30]. We wrote our own dataset generator using
the procedure described in [2]. Our generator, produces
longer frequent itemsets for the same parameters (code is
available by sending email to the author).

These datasets mimic the transactions in a retailing
environment, where people tend to buy sets of items
together, the so called potential maximal frequent set. The
size of the maximal elements is clustered around a mean
with a few long itemsets. A transaction may contain one or
more of such frequent sets. The transaction size is also
clustered around a mean, but a few of them may contain
many items.

Let D denote the number of transactions, T the average
transaction size, I the size of a maximal potentially frequent
itemset, L the number of maximal potentially frequent
itemsets, and N the number of items. The data is generated
using the following procedure. We first generate L maximal
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itemsets of average size I by choosing from the N items. We
next generate D transactions of average size T by choosing
from the L maximal itemsets. We refer the reader to [4] for
more detail on the database generation. In our experiments,
we set N � 1; 000 and L � 2; 000. Experiments are con-
ducted on databases with different values of D, T , and I.
The database parameters are shown in Table 1.

Fig. 17 shows the number of frequent itemsets of
different sizes for the databases used in our experiments.
The length of the longest frequent itemset and the total
number of frequent itemsets for each database are shown in
Table 2. For example, T30:I16:D400K has a total of
13480771 frequent itemsets of various lengths. The longest
frequent itemset is of size 22 at 0.5 percent support!

Comparative Performance. In Fig. 18 and Fig. 19, we
compare our new algorithms against Apriori and Partition
(with 3 and 10 database partitions) for decreasing values
of minimum support on the different databases. As the
support decreases, the size and the number of frequent
itemsets increases. Apriori, thus, has to make multiple
passes over the database (22 passes for T30:I16:D400K),
and performs poorly.

Partition performs worse than Apriori for high support,
since the database is scanned only a few times at these
points. The overheads associated with inverting the
database on-the-fly dominate in Partition. However, as the
support is lowered, Partition wins out over Apriori, since it
only scans the database twice. These results are in

agreement with previous experiments comparing these

two algorithms [26]. One problem with Partition is that as

the number of partitions increases, the number of locally

frequent itemsets, which are not globally frequent, increases

(this can be reduced somewhat by randomizing the

partition selection). Partition can thus spend a lot of time

in performing these redundant intersections. For example,

compare the time for Partition3 and Partition10 on all the

datasets. Partition10 typically takes a factor of 1.5 to 2 times

more time than Partition3. For T30:I16 (at 1 percent

support) it takes 13 times more! Fig. 20, which shows the

number of tid-list intersections for different algorithms on

different datasets, makes it clear that Partition10 is perform-

ing four to five times more intersections than Partition3.
AprClique scans the database only once and out-performs

Apriori and Partition for higher support values on the T10

and T20 datasets. AprClique is very sensitive to the quality

of maximal cliques (sublattices) that are generated. For

small support, or with increasing transaction size T for

fixed I, the edge density of the k-association graph

increases, consequently increasing the size of the maximal

cliques. AprClique doesn't perform well under these condi-

tions. TopDown usually performs better than AprClique, but

shares the same characteristics as AprClique, i.e., it is better

than both Apriori and Partition for higher support values,

except for the T30 and T40 datasets. At lower support, the

maximum clique size, in the worst case, can become as large

as the number of frequent items, forcing TopDown to
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perform too many k-way intersections to determine the

minimal infrequent sets.
Eclat performs significantly better than all these algo-

rithms in all cases. It usually out-performs Apriori by more

than an order of magnitude, Partition3 by a factor of two,

and Partition10 by a factor of four. Eclat makes only a few

database scans, requires no hash trees, and uses only simple

intersection operations to generate frequent itemsets.
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Further, Eclat is able to handle lower support values in

dense datasets (e.g., T20:I12 and T40:I8), where both

Apriori and Partition run out of virtual memory at 0.25

percent support.

We now look at the comparison between the remaining

four methods, which are the main contributions of this

work, i.e., between Eclat, MaxEclat, Clique and MaxClique.

Clique uses the maximal-clique-based decomposition, which

generates smaller classes with fewer number of candidates.

However, it performs only slightly better than Eclat. Clique

is usually 5-10 percent better than Eclat, since it cuts down

on the number of tidlist intersections, as shown in Fig. 20.

Clique performs anywhere from 2 percent to 46 percent

fewer intersections than Eclat. The difference between these

methods is not substantial since the savings in the number

of intersections does not translate into a similar reduction in

execution time.

The graphs for MaxEclat and MaxClique indicate that the
reduction in search space by performing the hybrid search
provides significant gains. Both the maximal clique-based
strategies outperform their prefix-based counterparts. Max-
Clique is always better than MaxEclat due to the smaller
classes. The biggest difference between these methods is
observed for T20:I12, where MaxClique is twice as fast as
MaxEclat. An interesting result is that for T40:I8 we could
not run the clique-based methods on 0.25 percent support,
while the prefix-based methods, Eclat and MaxEclat, were
able to handle this very low support value. The reason why
clique-based approaches fail is that whenever the edge
density of the association graph increases, the number and
size of the cliques becomes large and there is a significant
overlap among different cliques. In such cases, the clique
based schemes start to suffer.

The best scheme for all the databases we considered is
MaxClique since it benefits from the smaller sublattices and
the hybrid search scheme. Fig. 20 gives the number of
intersections performed by MaxClique compared against
other methods. As one can see, MaxClique cuts down the
candidate search space drastically, by anywhere from a
factor of 3 (for T20:I4) to 35 (for T40:I8) over Eclat. It
performs the fewest intersections of any method. In terms of
raw performance, MaxClique outperforms Apriori by a factor
of 20-30, Partition10 by a factor of 5, and Eclat by as much as
a factor of 10 on T20:I12. Furthermore, it is the only method
that was able to handle support values of 0.5 percent on
T30:I16 (see Fig. 19), where the longest frequent itemset
was of size 22. All bottom-up search methods would have
to enumerate at least 222 subsets, while MaxClique only
performed 197601 intersections, even though there were
13480771 total frequent itemsets (see Table 2). MaxEclat
quickly identifies the 22 sized long itemset and also other
long itemsets and thus avoids enumerating all subsets. At
0.75 percent support, MaxClique takes 69 seconds while
Apriori takes 22963 seconds, a factor of 332, while Partition10
ran out of virtual memory.

To summarize, there are several reasons why the last
four algorithms outperform previous approaches:
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1. They use only simple join operation on tid-lists. As
the length of a frequent sequence increases, the size
of its tid-list decreases, resulting in very fast joins.

2. No complicated hash-tree structure is used and no
overhead of generating and searching of customer
subsequences is incurred. These structures typically
have very poor locality [24]. On the other hand, the
new algorithms have excellent locality, since a join
requires only a linear scan of two lists.

3. As the minimum support is lowered, more and
larger frequent sequences are found. Apriori makes a
complete dataset scan for each iteration. Eclat and
the other three methods, on the other hand, restrict
themselves to usually only few scan, cutting down
the I/O costs.

4. The hybrid search approaches are successful by
quickly identifying long itemsets early and are able
to avoid enumerating all subsets. For long itemsets
of size 19 or 22, only the hybrid search methods are
able to run, while other methods run out of virtual
memory.

Scalability. The goal of the experiments below is to
measure how the new algorithms perform as we increase
the number of transactions and average transaction size.

Fig. 21 shows how the different algorithms scale-up as
the number of transactions increases from 100,000 to
5 million. The times are normalized against the execution
time for MaxClique on 100,000 transactions. A minimum
support value of 0.25 percent was used. The number of
partitions for Partition was varied from 1 to 50. While all the
algorithms scale linearly, our new algorithms continue to
out-perform Apriori and Partition.

Fig. 21 shows how the different algorithms scale with
increasing transaction size. The times are normalized
against the execution time for MaxClique on T � 5 and
200,000 transactions. Instead of a percentage, we used an

absolute support of 250. The physical size of the database
was kept roughly the same by keeping a constant T �D
value. We used D � 200; 000 for T � 5 and D � 20; 000 for
T � 50. The goal of this setup is to measure the effect of
increasing transaction size while keeping other parameters
constant. We can see that there is a gradual increase in
execution time for all algorithms with increasing transaction
size. However, the new algorithms again outperform
Apriori and Partition. As the transaction size increases, the
number of cliques increases, and the clique based algo-
rithms start performing worse than the prefix-based
algorithms.

Memory Usage. Fig. 22 shows the total main-memory used
for the tid-lists in Eclat as the computation of frequent
itemsets progresses on T20.I6.D100K. The mean memory
usage is less than 0.018MB, roughly 2 percent of the total
database size. The figure only shows the cases where the
memory usage was more than twice the mean. The peaks
in the graph are usually due to the initial construction of
all the (2-itemset) atom tid-lists within each sublattice.
This figure confirms that the sublattices produced by �1

and �1 are small enough, so that all intermediate tid-lists
for a class can be kept in main-memory.

8 CONCLUSIONS

In this paper, we presented new algorithms for efficient
enumeration of frequent itemsets. We presented a lattice-
theoretic approach to partition the frequent itemset search
space into small, independent subspaces using either
prefix-based or maximal-clique-based methods. Each
subproblem can be solved in main-memory, using bot-
tom-up, top-down, or a hybrid search procedure, and the
entire process usually takes only a few database scans.

Experimental evaluation showed that the maximal-
clique-based decomposition is more precise and leads to
smaller classes. When this is combined with the hybrid
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search, we obtain the best algorithm MaxClique, which
outperforms current approaches by more than an order of
magnitude. We further showed that the new algorithms
scale linearly in the number of transactions.

APPENDIX A

COMPUTATIONAL COMPLEXITY OF MINING FREQUENT

ITEMSETS

In addition to the practical utility of frequent itemsets in
real-life data mining problems, they are mathematically
elegant entities. The discussion below highlights the graph-
theoretic basis of itemset discovery and offers some insight
into the computational complexity of mining frequent
itemsets and related problems.

Definition 11. A bipartite graph G � �U; V ;E� has two
distinct vertex sets U and V , and an edge set
E � f�u; v� j u 2 U and v 2 V g. A complete bipartite sub-
graph I � T is called a bipartite clique, and is denoted as
Ki;t, where j I j� i, j T j� t and I � U , T � V .

The input database for association mining is essentially a
very large bipartite graph, with U as the set of items, V as
the set of tids, and each (item, tid) pair as an edge. The
problem of enumerating all (maximal) frequent itemsets
corresponds to the task of enumerating all (maximal)
constrained bipartite cliques, Ki;t, where t � min sup. Due
to the one-to-one correspondence between bipartite graphs
and binary matrices, one can also view it as the problem of
enumerating all (maximal) unit submatrices in a binary
matrix satisfying the support constrains. For connections
between mining minimal infrequent itemsets and hyper-
graph transversals, see [11].

Fig. 23a shows the database as a bipartite graph and the
maximal bipartite clique K4;3 � ACTW � 135 (maximal
frequent itemset ACTW ).

Theorem 1. Whether a bipartite graph G � �U; V ;E�, with
j U j�j V j� n contains a balanced bipartite clique Kk;k is
NP-Complete.

Proof. If we have a possible solution, then in time O�k2�, we
can determine if it is indeed a bipartite clique. The

problem is thus in NP. Let us consider the question,
ªDoes the (regular) graph G0 � �V 0; E0� contain a clique
with k vertices?º which is known to be NP-Complete
[10]. We reduce the clique problem in regular graphs to
the balanced bipartite clique problem as follows: Let
U � V � V 0, and let E � f�u; v� j u � v or �u; v� 2 E0g.
Then G0 has a clique of size k iff G has a balanced
bipartite clique of size k. This reduction takes O�E0 � V 0�
time. This proves the result. tu

Corollary 1. Whether a bipartite graph G � �U; V ;E�, contains
a bipartite clique Ki;t is NP-Complete. Thus, whether there
exists a frequent itemset of a certain size is NP-Complete.

Fig. 23b shows the complexity of decision problems for
maximal bipartite cliques (itemsets) with restrictions on the
size of j I j� i (items) and j T j� t (support). For example,
the problem whether there exists a maximal bipartite clique
such that i� t � k (with constant k) is in P, the class of
problems that can be solved in polynomial time. On the
other hand, the problem whether there exists a maximal
bipartite clique such that i� t � k is NP-Complete [17], the
class of ªhardº problems for which no polynomial time
algorithm is known to exist. The last row of the table may
seem contradictory. While there is unlikely to exist a
polynomial time algorithm for finding a clique with
i� t � k, the largest cliques with i� t � k can be found
by reducing it to the maximum matching problem [16],
which has O��U � V �2:5� complexity.

While the class NP asks whether a desired solution
exists, the class #P asks how many solutions exist. In the
cases known so far, the counting problems that correspond
to NP-Complete problems are #P-Complete. The following
theorem says that counting the number of maximal cliques
in a bipartite graph is extremely hard.

Theorem 2 ([17]). Determining the number of maximal bipartite
cliques in a bipartite graph is #P-Complete.

The complexity results shown above are quite pessimis-
tic, and apply to general bipartite graphs. We should
therefore focus on special cases where we can find
polynomial time solutions. Fortunately, for association
mining, in practice, the bipartite graph (database) is very
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sparse, and we can in fact obtain linear complexity in the
graph size.

The arboricity r�G� of a graph is the minimum number of
forests into which the edges of G can be partitioned, and is
given as r�G� � maxH�G e�H�=�n�H� ÿ 1�f g, where n�H� is
the number vertices and e�H� the number of edges of the
subgraph H. A bound on the arboricity is equivalent to a
notion of hereditary sparsity. For a bipartite graph
r�G� � i � t=�i� tÿ 1�, where Ki;t is a maximum bipartite
clique. Furthermore, if we assume i� t (as is generally the
case in practice, since we want large support), then
r�G� � i, i.e., the arboricity is given by the maximum sized
frequent itemset. The following theorem says that the
complexity of finding all maximal bipartite cliques is linear
in number of items and transactions:

Theorem 3 ([9]). For sparse graphs, of bounded arboricity i, all
maximal bipartite cliques can be enumerated in time
O�i3 � 22i � �U � V ��.

To explain the intuition behind this theorem we need the
following definition:

Definition 12. An orientation of an undirected graph G, is
obtained by assigning a direction (i.e., ªorientingº) to each
edge. A d-bounded orientation of G is an orientation in
which each edge has out-degree at most d.

It can be shown that if a graph has arboricity i, then it
has a i-bounded orientation, and a 2i-bounded acyclic
orientation [9]. In other words, each vertex in the oriented
graph can have at most out-degree 2i. In terms of our
database representation, it means that each transaction can
have at most 2i items, and each item can be part of at most
2i transactions. Now for any bipartite clique I � T , either I
or T is a subset of the out-neighbors of some vertex. Thus,
to generate all possible cliques, we can generate all subsets
of each vertex's out-neighbors. This costs O�22i� time, and
we do this for all vertices, i.e., j U j � j V j , giving us
O�22i � �j U j � j V j�� time. The remaining i3 factor is the
additional overhead of eliminating duplicates, verifying if
indeed the enumerated subsets form a clique, and other
algorithmic costs. In effect, the above theorem says that
finding frequent itemsets in databases with bounded

transaction size takes time linear in the number of
transactions and the number of items.

While it is easy to see, even without the above theorem,
that if the largest transaction size is bounded of length i,
then one can enumerate all itemsets and check if they are
frequent in time O�2i � V �, where V is the number of
transactions. That is, association mining is linear in the
number of transactions (with bounded length) in the worst
case. What the above theorem claims is that, at least in
theory, the association mining algorithms should also scale
linearly in the number of items or attributes, a very
important feature if practicable! It should be noted that,
even though the complexity of the enumeration for sparse
graphs is linear in the number of items and transactions, the
bound is not practical for large databases due to the large
constant overhead, which is exponential in i, which can
easily be around 10 to 20 or more in practice.

A.1 Finding Maximum Frequent Itemsets

Theorem 4 ([16]). All maximum independent sets can be listed
in O��U � V �2:5 � � time, where  is the output size.

The above theorem states that all the maximum (largest)
bipartite cliques (independent sets in complementary
graph) of a bipartite graph can be found in time polynomial
in input, and linear in the output size, i.e., we can find all
the largest frequent itemsets in output polynomial time.
This result relies on the complexity of maximum bipartite
matchings, which is O��j U j � j V j�2:5�. However, due to
the greater than quadratic complexity, it remains to be seen
if this algorithm is practical for large databases with
millions of transactions.

Finally, we would like to point out the connection of
frequent itemsets to extremal graph theory. Let H be a fixed
graph. The classical problem, from which extremal graph
theory has originated, is to determine the maximum
number of edges in a graph on n vertices which does not
contain a copy of H. This maximum value is called the
TuraÂn number of H. Specifically, the bipartite case corre-
sponds to the Zarankiewicz problem. The Zarankiewicz
number, Z, can tell us the maximum size of a frequent
itemset guaranteed to exist given the number of edges
present in the database.
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Definition 13. The Zarankiewicz number Z�m;n; i; t� is the
least number of edges in a bipartite graph G � �U; V ;E�, with

j U j� m and j V j� n, such that G must contain a Ki;t.

Theorem 5 ([18]). Let L�m;n; i; t� � mnÿ Z�m;n; i; t�,
h � mÿ i, a nd k � nÿ t. I f t > h�bk=ic � 1�, t h e n

L�m;n; i; t� � h�bk=ic � 1� � k. The dual also holds if we

replace i with t and h with k.

This theorem gives exact value for the Zarankiewicz
number, but it cannot directly be used to estimate the size
since it fills the upper triangle of the matrix indexed by i

and t, the size of the bipartite clique Ki;t � I � T , as shown
in Fig.23c. For example, to guarantee the existence of a K5;6

we need 30 edges. In association mining, we are usually
interested in small i (10 to 20), and t � min sup, where
min_sup is a small fraction of the number of transactions.
This point, thus, lies in the lower half of the matrix, which
the above theorem cannot fill. However, since the input
database, G, is very sparse its complement, G, must be
dense. Furthermore, using the above theorem, we can find
the size of the guaranteed maximum clique in G, given as
Kmÿi;nÿt, which lies in the upper half. This also tells us that
Kmÿi;nÿt is an independent set in G, and consequently, no
frequent itemset can be a subset of I � T � Kmÿi;nÿt.
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