
SmartMiner: A Depth First Algorithm Guided by Tail 
Information for Mining Maximal Frequent Itemsets 

Qinghua Zou 
Computer Science Department 

University of California-Los Angeles 

zou@cs.ucla.edu 

Wesley W. Chu 
Computer Science Department 

University of California-Los Angeles 

wwc@cs.ucla.edu 

Baojing Lu 
Computer Science Department 
North Dakota State University 

baojing.lu@ndsu.nodak.edu 
 
 

ABSTRACT 
Maximal frequent itemsets (MFI) are crucial to many tasks in data 
mining.  Since the MaxMiner algorithm first introduced 
enumeration trees for mining MFI in 1998, there have been 
several methods proposed to use depth first search to improve 
performance.  To further improve the performance of mining MFI, 
we proposed a technique to gather and pass tail (of a node) 
information to determine the next node to explore during the 
mining process.  Our algorithm uses an augmented dynamic 
reordering heuristic with considering of the tail information.  
Compared with Mafia and GenMax, SmartMiner generates a 
much smaller search tree, requires a smaller number of support 
counting, and does not require superset checking.  Using the 
datasets Mushroom and Connect, our experimental study reveals 
that SmartMiner generates the same MFI as Mafia and GenMax, 
but yields an order of magnitude improvement in speed.   

Keywords 
Data mining, frequent patterns, maximal frequent pattern, tail 
information, search space pruning. 

1. INTRODUCTION 
Mining frequent itemsets in large datasets is an important problem 
in the data mining field since it enables essential data mining tasks 
such as discovering association rules, data correlations, sequential 
patterns, etc.  The problem of finding frequent itemsets was 
originally proposed by Agrawal [1] in his association rule model 
and the support confidence framework. It can be formally stated 
as following: 

Let I be a set of items and D be a set of transactions, where a 
transaction is an itemset. The support of an itemset is the number 
of transactions containing the itemset. An itemset is frequent if its 
support is at least a user specified minimum support value, 
minSup. Let FI denote the set of all frequent itemsets. An itemset 
is closed if there is no superset that has the same support. The set 
of all frequent closed itemsets is denoted by FCI.  A frequent 
itemset is called maximal if it is not a subset of any other frequent 
itemset.  We denote MFI as the set of all maximal frequent 
itemsets.  Any maximal frequent itemset X is a frequent closed 
itemset since no nontrivial superset of X is frequent.  Thus we 
have FIFCIMFI ⊆⊆ . 

There are three different approaches for generating FI.  First, 
candidate set generate-and-test approach [1,11,14,8,12,7]: most 
previous algorithms belong to this group. The basic idea is to 
generate and then test the candidate set. This process is repeated 

in a bottom up fashion until no candidate set can be formed.  
Second, sampling approach [7]: it selects samples of a dataset to 
form the candidate set.  The candidate set is tested in the entire 
dataset to identify frequent itemsets.  Sampling reduces 
computation complexity but the result is incomplete. Third, data 
transformation approach [6,16,17]: it transforms a dataset for 
efficient mining.  For example, the FP-tree [6] builds up a 
compressed data representation called FP-tree from a dataset and 
then mines frequent itemsets directly from the FP-tree. The 
pattern decomposition algorithm (PDA) [16,17] decomposes 
transactions and shrinks the dataset in each pass. Both FP-tree and 
PDA greatly reduce the original dataset and also do not need to 
generate candidate sets. 

When the frequent patterns are long, mining FI is infeasible 
because of the exponential number of frequent itemsets.  Thus, 
algorithms mining FCI [9,15,10] are proposed since FCI is 
enough to generate association rules.  However, FCI could also be 
exponentially large as the FI.  As a result, researchers now turn to 
find MFI. Given the set of MFI, it is easy to analyze many 
interesting properties of the dataset, such as the longest pattern, 
the overlap of the MFI, etc.  All FI can be built up from MFI and 
can be counted for support in a single scan of the database.  
Moreover, we can focus on part of the MFI to do supervised data 
mining.  

In this paper we introduce the SmartMiner that at each step passes 
tail information (defined in section 2) to guide the search for new 
MFI. SmartMiner using an augmented heuristic and tail 
information has many benefits: it does not require superset 
checking, reduces the computation for counting support, and 
yields a small search tree. Our experimental results reveal that 
SmartMiner is an order of magnitude faster than Mafia [4] and 
GenMax [5] in generating MFI on the same datasets. 

1.1 Related works 
We first introduce an enumeration tree for an itemset I.  Assume 
there is a total ordering L≤  over the items I in the database.  We 

say kLj ii ≤ if item ji occurs before item ji  in the ordering. 

This ordering can be used to enumerate the item subset lattice 
(search space).  Each node composed of head and tail represents a 
state in the search space.  The head is a candidate for FI while the 
tail contains candidate items to form new heads. For example, 
Figure 1 shows a complete enumeration tree over five items abcde 
with the ordering a,b,c,d,e. Each node is written as head:tail. It 
begins with root node :abcde.  For each item ai in the tail of a 
node X:Y, a sub node is created with Xai as its head and  the items 
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Figure 3: The tree for counting 
support used by Mafia 

after ai in Y as its tail. For instance, the head of the node :abcde is 
empty and its tail is abcde; the head of b:cde is b and its tail is 
cde.   

The problem of mining frequent itemsets is to find a cut through 
this lattice such that all itemsets above the cut are frequent, and 
those below the cut are infrequent (see Figure 1).  A node is called 
a frequent node if its head is frequent.  The positive border 
consists of the frequent nodes directly above the cut, while the 
negative border is the set of infrequent nodes directly below the 
cut.  With a simple traversal without pruning, we need to count 
the supports of all nodes above the cut and also the negative 
border. 

Using the enumeration tree as shown in Figure 1, we can describe 
recent approaches to the problem of mining MFI.  MaxMiner [3] 
uses a breadth-first search and performs look-ahead pruning on 
tree branches.  The look-ahead use superset pruning, i.e., if the 
head of a node with its tail is frequent, there is no need to further 
process the node since all descents of the node will be frequent.  
MaxMiner also first introduced the heuristic that is to reorder 
items in the tail of a node in the increasing order of their support. 
This technique is known as dynamic reordering. In general, 
however, superset pruning works better with a depth-first 
approach since many long frequent itemsets may already have 
been discovered.  But MaxMiner uses a breadth-first approach to 
limit the number of passes over the database.  Since large main 
memory size is available (in Gigabyte), depth first search is used 
to efficiently find long patterns.  
DepthProject [2] uses depth first search on a lexicographic tree of 
itemsets to find MFI, and projects transactions database on the 
current node to speed counting the support of itemsets.  
DepthProject also use the look-ahead pruning and dynamic 
reordering.  With dynamic reordering, infrequent items at the 
current node can be deleted from the tail so that the size of the 
search space can be greatly reduced. 
Mafia [4] proposes parent equivalence pruning (PEP) and 
differentiates superset pruning into two classes FHUT and 
HUTMFI.  For a given node X:aY, the idea of PEP is that if 
sup(X)=sup(Xa), i.e. every transaction containing X also contains 
the item a, then the node can simply replaced by Xa:Y.  The 
FHUT is to use leftmost tree to prune its sister, i.e., if the entire 
tree with root Xa:Y is frequent, then we do not need to explore the 
sisters of the node Xa:Y.  The HUTMFI is to use the known MFI 
set to prune a node, i.e., if itemset of XaY is subsumed by some 
itemset in the MFI set, the node Xa:Y can be pruned.  Mafia also 
uses dynamic reordering to reduce the search space.  The results 
show that PEP has the biggest effect of the above pruning 

methods (PEP, FHUT, and HUTMFI) and dynamically reordering 
the tail also has dramatic savings. 
Both DepthProject and Mafia mine a superset of the MFI, and 
require a post-pruning to eliminate non-maximal patterns [5].  
Algorithm GenMax [5] integrates pruning with mining and 
returns the exact MFI by using two strategies. First, just like 
transaction database is projected on current node, the discovered 
MFI set can also be projected on the node and thus yields fast 
superset checking.  Second, GenMax uses Diffset propagation to 
perform fast frequency computation.  Experimental results show 
that GenMax has comparable performance with Mafia.  

1.2 Limitations of Previous Algorithms 
For simplicity, we use Mafia as an example to illustrate problems 
that existed in previous approaches.  For the example in Figure 1, 
Mafia will generate a search tree, as shown in Figure 2, assuming 
that frequent itemsets have different support and the nodes are 
already sorted in the order of increasing support.  In the figure, the 

shaded nodes will be removed by superset pruning.  The node 
abcde: in dotted box is not a part of the search tree since dynamic 
reordering is used.  The nodes with lines crossing through are 
tested and found to be infrequent.  
First, the size of the tree is too big and can be reduced.  Although 
the shaded nodes can be pruned away, a more efficient strategy is 
not to generate those nodes in the search tree. In Figure 2, Mafia 
traverses 31 nodes. SmartMiner uses such a strategy and traverses 
only 9 nodes (see section 3.2) for the same example. 
Second, there exists too much support counting for determining 
the frequency of tail items.  Figure 3 shows the tree for counting 
support for Figure 2.  Let X be an itemset and T(X) be the set of 
transactions than contains X.  For the root node at the top level, 
the transaction set is 

)(φT since the head of the 

node is empty φ .  For the 
node, the supports of a,b,c,d,e 
are counted and found to be 
above minsup.  In the 
transaction set )(aT , we 
found b,c,d,e to be frequent.  
Items c,d,e are frequent in )(abT .  Item d is frequent and e 

infrequent in )(abcT .  Mafia requires total 30 frequency 
testing.   Using tail information to augment dynamic reordering, 
SmartMiner needs only 23 such frequency testing. 
Finally, all previous approaches require superset checking for two 
purposes: pruning nodes and removing non-maximal itemsets in 

Figure 1: An enumeration tree for abcde for the given 
order of a, b, c, d, e 
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Figure 2: The search tree for Mifia with dynamic 
reordering and the three pruning techniques. 
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MFI.  If the set of MFI is large, as in most real dataset, the 
superset checking can be very expensive.  In above example, 
Mafia performs 30 superset checking.  As will be discuss later, 
SmartMiner does not require any superset checking. 

2. Partition and Pruning Properties 
In this section, we define some concepts for SmartMiner. 

2.1 Partitioning a search space  
Let N=X:Y be a node where X is the head of N  and Y is the tail of 
N. All possible subsets of Y is called the power set of Y, denoted 
by P(Y). 
Definition 1 For a node N=X:Y, the set  of all the itemsets 
obtained by concatenating X with the itemsets in P(Y) is called 
the search space of N, denoted as {X:Y}. That is 

 )}(|{}:{ YPVVXYX ∈∪= . 

For example, the search space {b:cd} includes four itemsets b, bc, 
bd, and bcd.  The search space {:abcde} includes all subsets of  
abcde. 
By definition 1, we have {X:Y}={X:Z} where Z=Y-Z.  Thus we 
will assume Y does not contain any item in X when {X:Y} is 
mentioned in this paper.  
Definition 2 Let S, S1, and S2 be search spaces.  The set {S1, S2} is 
a partition of S if and only if S= S1 ∪ S2 and S1 ∩ S2=φ . The 
relationship is denoted by S=S1+S2 or S1= S-S2 or S2= S-S1.  We 
say S is partitioned into S1 and S2. Similarly, a set {S1, S2, …, Sk} 
is a partition of S if and only if S= S1 ∪ S2 ∪ … ∪ Sk and 
Si ∩ Sj=φ for i,j∈ [1..k] and i ≠ j.  We denote it as 
S=S1+S2+…+Sk.  
Let a be an item, aX is an itemset by adding a to X. 

Theorem 1 For a∉ X,Y, the search space {X:aY} can be 
partitioned into {Xa:Y} and {X:Y} by item a, i.e., 
{X:aY}={Xa:Y}+{X:Y}. 
Proof:  It follows from the fact that each itemset of {X:aY} either 
contains a or does not. 
For example, we have {b:cd}={bc:d}+{b:d}. 
In general, suppose a1,a2,…,ak be distinct items and a1a2…akY be 
an itemset. 
Theorem 2 Partition search space: the search space of {X: 
a1a2…akY} can be partitioned into 

,}:{}:{
1

1∑
=

+ +
k

i
kii YXYaaXa � where .,YXai ∉  

Proof:  It follows by partitioning the search space via items 
a1,a2,…,ak sequentially as in theorem 1. 
For example, we have {b:cd}={bc:d}+{bd:}+{b:} and   
{a:bcde}= {ab:cde} +{ac:de}+{a:de}. 

Let {X:Y} be a search space and Z be a known frequent itemset.  
Since Z is frequent, all subset of Z will be frequent, i.e. every 
itemset of {:Z} is frequent.  Theorem 3 shows how to prune the 
space {X:Y} by Z.  
Theorem 3 Pruning search space: if Z does not contain the head 
X, the space {X:Y} can not be pruned by Z, i.e., {X:Y}-
{:Z}={X:Y}. Otherwise, the space can be pruned as  

{X:Y}-{:Z} =∑
=

+ ∩
k

i
kii ZYaaXa

1
1 )}(...:{ , a1a2…ak=Y-Z. 

Proof:  If Z does not contain X, no itemset in {X:Y} is subsumed 
by Z.  Therefore, knowing Z frequent can not prune away any part 
of the search space {X:Y}. Otherwise X is a subset of Z, we have 

{X:Y}= VXVaaXa
k

i
kii :}...:{

1
1 +∑

=
+ , where V=Y ∩ Z. 

The head in the first part is Xai. Since Z does not contain ai, the 
first part can not be pruned. For the second part, we have {X:V}-
{:Z}={X:V}-{X:(Z-X)}. Since X ∩ Y=φ , we have V ⊆ Z-X. 
Therefore {X:V} can be pruned away entirely.  
For example, we have {:bcde}-{:abcd}={:bcde}-{:bcd}= 
{e:bcd}.  And {e:bcd}-{:abe}={e:bcd}-{:be}= {e:bcd}-{e:b} =  
{ec:bd}+{ed:b}. 

2.2 Evaluating Tail Information 
Definition 3 Let M be known frequent itemsets and N=X:Y be a 
node.  The tail information of M to N, TInf (N|M), is the tail parts 
of the frequent itemsets in {X:Y} that can be inferred from M,i.e.,   

},|{)|( ZXMZZYMNTInf ⊆∈∀∩=  
For example, TInf (e:bcd|{abcd,abe,ace})={b,c}, which means 
that eb and ec are frequent given {abcd,abe,ace} frequent.  
Inf(e:bcd|{abcd,abe,ace,bce})={b,c,bc}.  For simplicity we call 
tail information as information.  
Definition 4 The value of tail information W is all itemsets that 
are subsets of some member of W. That is, 

},|{)( ZXWZXWVTI ⊆∈∀=  

For example, VTI({b,c,bc})={φ ,b,c,bc}=VTI({bc}).  Notice that 
removing non-maximal itemsets from information set does not 
decrease its value.  Therefore whenever we found a non-maximal 
itemset in the information set, we deleted it.  

3. The Strategy of SmartMiner 
3.1 Tail information guided depth-first search  
Assume the tail of a node may contain many infrequent items, 
pure depth-first search is inefficient.  Hence dynamic reordering is 
used to prune away infrequent items from the tail of a node before 
exploring its sub nodes.   
 



 
SmartMiner uses tail information to guide depth-first search.  We 
illustrate the strategy for a given node Ni=X:Y as shown in Figure 
4. The purpose of the node Ni=X:Y is to compute maximal 
frequent itemsets in the transaction set T(X).  The inputs for node 
Ni=X:Y are transaction set T(X), the tail Y, and the tail information 
for Ni known so far, Ginf, is called global tail information for 
node Ni. The outputs of the node are the updated GInf and 
discovered maximal frequent itemsets Mfi. Upon calling the node 
Ni, we count the supports for the items in the tail Y. By removing 
infrequent items from Y, we have Y0. 
The time sequence at node Ni in Figure 4 is t0,t1,…,tn. At the 
moment t0, item a0 is selected from Y0 to be the head of next state 
S1 and Y1= Y0- a0 is the tail of S1.  The tail information Inf1-0 is 
computed by Inf(a0:Y1 |GInf).  We then create node Ni+1=Xa1:Y1.  
The call for node Ni+1 returns Mfi0 and updated Inf1-0 in which the 
members subsumed by Mfi0 are marked deleted.  At t1, we 
calculate the tail information Inf0-1 for Y1 from Inf0-0, Inf1-0, and 
Mfi0. The information from Inf0-0 and Inf1-0 is updated global 
information.  The information from Mfi0 is local information.  
Using information Inf0-1, item a1 is selected from Y1 to be the head 
of the next state S1 and Y2= Y1- a1 is the tail of S1.  Then node 
Ni+2=Xa2:Y2 is created and called to compute maximal frequent 
itemsets in transaction sets t(Xa2). This process continues till tn 
where no item can be selected as head of S1. The returned 
maximal frequent itemsets Mfi= ii Mfia∪ ,i∈ [0..n-1]; the 
updated GInf is these itemsets in the original GInf which have not 
marked as deleted. 
SmartMiner uses tail information to guide depth-first search 
which is different from dynamic reordering depth-first strategies 
(DFS).  First, SmartMiner defers creating a node till its preceding 
nodes are visited, while DFS creates nodes for each item in the 
tail of a node in the increasing order of their supports. DFS 
creates as many sub trees as the number of frequent items in the 
tail.  Second, SmartMiner augments the dynamic ordering 
heuristic with considering the tail information about each item 
(see section 4.3).  Using this heuristic, SmartMiner creates far less 
sub trees than simple dynamic reordering.  Finally, by passing tail 
information, SmartMiner does not require the time for superset 
checking that is required for DFS. 

3.2 An example 
We now use an example to illustrate how SmartMiner finds the 
same MFI as shown in Figure 5 for the problem in Figure 2.  
There are nine nodes N0, N1, … , N8 in the search tree.  For a given 
node, the columns t0, t1, …, tm represent the sequential time point 
of the node.  The row S0 represents the initial state and the Inf0 is 
the tail information for S0.  The row S1 is the next state to explore 
and the relevant information is on the row Inf1.  Note here Inf1 
also called the global information as input for the next state and 
will be updated. The row Mfi is the returned mfi after exploring 
the state S1.  On top of each node, we give the transaction set for 
the node. For example, the transaction set for N0 is the entire 
dataset )(φT ; the transaction set for N1 is )(aT  which 
represents all the transactions containing item a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SmartMiner begins at the node N0 at t0, N0(t0), where  S0=:abcde 
and Inf0 is empty. At this point, item a is selected and thus the 
next state S1=a:bcde.  Here Inf1 is empty since Inf0 is empty.  
Next SmartMiner create the node N1 for the state S1=a:bcde by 
setting its transaction set )(aT  and its initial set S0=:bcde. 
When SmartMiner call the new node N1, each item in the tail 
S0=:bcde will be sorted in the increasing order of their support in 

)(aT  and the infrequent items will be dropped.  The process 
continues to N2(t0), and then to N3(t0) where S0=:de and e is 
dropped since it is infrequent in )(abcT .  This yields S0=:d, 
SmartMiner returns d as mfi to N2(t0) which will be added into 

)(φT
N0 t0 t1 t2 
S0 :abcde :bcde :bcd 
Inf0 nil bcd,be,ce bcd,bc,d 
S1 a:bcde e:bcd nil 
Inf1 nil b,c nil 
Mfi bcd,be,ce bc,d nil 

N1 t0 t1 t2 
S0 :bcde :cde :cd 
Inf0 nil cd,e cd,c 
S1 b:cde e:cd nil 
Inf1 nil [] nil 
Mfi cd,e c nil 

N2 t0 t1 t2 
S0 :cde :de :d 
Inf0 nil d d 
S1 c:de e:d nil 
Inf1 nil nil nil 
Mfi d [] nil 

N3 t0 
S0 :de 
Inf0 nil 
S1 nil 
Inf1 nil 
Mfi d 

N4 t0 
S0 :d 
Inf0 nil 
S1 nil 
Inf1 nil 
Mfi [] 

N5 t0 
S0 :cd 
Inf0 []1 

S1 nil 
Inf1 nil 
Mfi c 

N6 t0 t1 t2 
S0 :bcd :bc :c 
Inf0 b1,c2 b1,c2 c 
S1 d:bc b:c nil 
Inf1 nil [] nil 
Mfi [] c nil 

N7 t0 
S0 :bc 
Inf0 nil 

S1 nil 
Inf1 nil 
Mfi [] 

N8 t0 
S0 :c 
Inf0 []1 

S1 nil 
Inf1 nil 
Mfi c 

Input 
T= )(φT  
S=:abcde 
GInf=nil 
Output 
GInf=nil 
Mfi=abcd,abe,ace,ebc,ed

Input 
 T=T(e) 
 S=e:bcd 
 GInf=b, c 
Output 
 GInf=b, c 
 Mfi=bc d 

T(eb)T(ed) T(ae) T(ab)

T(abe)T(abc)

T(e) T(a) 

Figure 5: An example of using SmartMiner to discover the MFI 

 Local 
information

Ni=X:Y t0 t1 … tn 
S0: Initial state Y0 Y1 … Yn 
Inf0: Inf(S0) Inf0-0=GInf Inf0-1 … Inf0-n 
S1: Next state a0:Y1 a1:Y2 … nil 
Inf1: Inf(S1| Inf0) Inf1-0 Inf1-1 … nil 

Mfi: mfi for the tail of  S1 Mfi0 Mfi1 … nil 

Input 
Transaction set T=T(X) 
Tail of the node S=Y 
Global information GInf=Inf(Ni) 

Output 
Updated GInf 
Returned mfi Mfi

T (a0X), Y1 
 Inf1-0, Mfi0 
Ni+1=Xa0:Y1 … 
  

 (1) 

 (2) 

Ni+2=Xa1:Y2 … 
  

 (3) 
 (4) 

Figure 4: Search strategy illustrated at the node Ni=X:Y 



Inf0 at N2(t1). Thus at N2(t0), Inf0 =d.  SmartMiner then select  
S1=e:d for next node, N4(t0). 
The entire search route will be N0(t0), N1(t0), N2(t0), N3(t0), N2(t1), 
N4(t0), N2(t2), N1(t1), N5(t0), N1(t2), N0(t1), N6(t0), N7(t0), N6(t1), 
N8(t0), N6(t2), and N0(t2).  As shown in the figure, at N0(t1), 
Inf0=bcd,be,ce, S1=e:bcd, and the two itemsets be,ce contain e.  
By removing e from be,ce, we get Inf1=b,c.  When calling N6, 
global information Ginf=b,c is passed from N0(t1) to N6(t0).  Upon 
completing exploring the node N6,  bc,d are found to be mfi and 
Ginf=b,c will be updated to be empty since they are dropped 
respectively at N8(t0) to N6(t1) and at N6(t1) to N6(t2).  When it 
returns from N6, the Inf1 at N0(t1) will be empty. By collecting Mfi, 
Inf1, and unselected Inf0 at N0(t1), we have Inf0=bcd,bc,d at N0(t2). 
The search terminates at N0(t2) since the tail of S0=:bcd is in the 
Inf0. 
Figure 6 shows the tree for 
counting support using 
SmartMiner.  At node N0, 
SmartMiner counts the 
supports for a,b,c,d,e and 
found they are frequent.  At 
node N1, items b,c,d,e are 
found to be frequent in T(a).  
It is shown that there are a 
total of 23 times to count for support. 

4. Algorithmic Descriptions 
4.1 Object model design 
 

VData
- data: BitSet[]
- minSup: int
+ VData(String fileName, float
minSup)
+ getStart(Shorts tail):short[]
+ calSup(int[] base, Shorts
tail):short[]
+ getBase(int[] base, short item):int[]
- calSup(int[] base, short item):int
- loadData(String fileName):void

TInf
+ ginf: SortedShorts[]
+ mfi: Vector
+ tail: Shorts
- infs: Hashtable
- pep: short[]
+ TInf(Vector ginf, short[] pep,
Shorts tail)
+ AddInfo(Vector newinf):void
+ AddMfiInf(Vector mfi1):void
+ DoItem(short item):Vector
+ select():short
-  maxLen():short[]

Miner
- vData: VData
- mfi: Vector
+ main(String argv[]): void
+ Miner(String fileName, float minSup)
+ mining(): void
- infMfi(int[] base, Shorts tails, Vector ginf): Vector
- output():void

1

1 1

*

 
 
 
Our data mining system is implemented in Java rather than C++ 
because Java has better portability.  Figure 7 shows the three 
classes in our system whose data types are specified using Java 
language.  The class VData is the vertical data model for a 
transaction dataset.  It loads data from a given fileName and 
builds up a BitSet for each frequent item.  The TInf class manages 

the tail information for a given node.  The Miner class uses the 
proposed tail information based depth-first search to recursively 
discover all MFI.  An instance of Miner has exactly one object of 
VData and will dynamically create one object of TInf for a node 
when the mining starts.  More details is given in the following 
sections. 

4.2 Vertical data class: VData 
We chose to use a vertical BitSet representation for the database.  
A vertical BitSet corresponds to one frequent item.  In a BitSet, 
there is one bit for each transaction in the database.  If item i 
appears in transaction j, then bit j of the BitSet data[i] is set to 
one; otherwise, the bit is set to zero.  The constructor 
VData(String filename, float minSup) calls the private function  
Load(String filename) to load data from the file into the variable  
data.  It also calculates the minSup by multiplying the float 
minSup with the number of transactions.  The variable int[] base 
in methods calSup and getBase is an array of transaction id.  The 
base of a node represents the transaction set T(X) where X is the 
head of the node.  The private method calSup(int[] base, short 
item):int is to calculate the support of the item in the given base. 
The VData provides three methods for data mining.  First, the 
method getStart(Shorts tail):short[] returns the set of items that 
occur in every transaction.  It also passed other items by Shorts 
tail in the order of increasing support.  The getStart is called at a 
root node.  Second, the public method calSup(int[] base, Shorts 
tail):short[] is similar to the getStart.  It returns the set of items in 
every transaction of the base and passes other frequent items at 
the base in the order of increasing support.  Finally, the method 
getBase(int[] base, short item):int[] simply returns a new base 
which is the subset of the base whose corresponding transactions 
contains the item.  
Note that when calculating support of an item in a base, the 
VData needs to test as many bits as the size of the base.  It is 
slower than the Bitmap model where supports can be calculated a 
byte (8 bits) at a time.  Our VData model is also slower than the 
diffset model of GenMax[] .  However, the VData keeps only one 
copy of data and thus needs less memory than the other two 
models.  In other words, both Mafia and GenMax need to build up 
new datasets for the mining of sub nodes.  Moreover, the VData is 
easy to implement and is fair to use it as a common data model to 
compare different search strategies of SmartMiner, Mafia, and 
GenMax.  

4.3 Tail information class: TInf 
For a given node, an instance of the TInf class is created to 
manage the tail information at the node.  The global information 
ginf is passed from its parent node.  The mfi is the local maximal 
frequent itemsets discovered at the node.  The itemsets to be 
explored is stored in the tail.  Tail information for the tail is 
stored in the hash table infs. The pep is the items occurred in 
every transaction of the transaction set of the node which is 
specified by the base. 
The constructor method accepts global information ginf, common 
items pep, and a tail to create a new instance.  The public methods 
AddInfo and AddMfiInf calculate relevant information of the 
newinf and the mfi1 on tail respectively and then hash them into 
the hash table infs.  The method DoItem(short item):Vector 
separates the itemsets in the infs into two groups: one mentions 
the item; another does not.  The first group will be removed from 
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Figure 7: The object model used for implementing SmartMiner 



the hash table and returned as a vector after dropping the item 
from its itemsets.  The second group remains in the table. The 
method also removes the item from the tail.  For every item in the 
tail, the private method maxLen():short[] is to find the maximal 
length of itemsets in the hash table infs that contains the item.  
Note that, in our experiment, we use a simplified maxLen that 
returns an array of value either 0 or the maximal length. More 
specifically, the maxLen first finds the longest itemset V in the infs 
and then set the lengths of items in V to |V| and the lengths of 
other items to 0.   
Figure 8 describes the selection method which is a heuristic to 
select an item to partition the search space.  In dynamic 
reordering, the item of least support is chosen to explore first 
since it is likely that the sub search tree is small.  This heuristic is 
shown to be very effective.  We augument it by the observation 
that, if an item contained by an itemset of size k in the infs, there 
are 2k itemsets that are known to be frequent and can be pruned 
away from the search space.  Therefore our heuristic chooses an 
item of the smallest known space, i.e., not occur in long itemsets 
in the infs.  If the size of current tail is less than 2, the search 
space is immediately solvable as shown in line 1~3.  Line 4 calls 
the method maxLen.  Line 5 is to find the positions of the minimal 
and maximal values in len.  Note that, if there are several 
positions for minimal value, we will choose the least position of 
them since the corresponding item in the tail has the least support.  
If there is an itemset in the infs has the size of the tail, this means 
the whole search space of the tail is frequent and thus there is no 
need to build a sub node as shown in line 6-8.  If there are some 
itemsets originated from ginf and they are not of the size of the 
tail, the corresponding itemsets in ginf will be deleted since they 
are subsets of some other itemset.  Line 9 returns the selected 
item. 
 
 
 
 
 
 
 
 
 
 
 
 

4.4 Data mining class: Miner 
The Miner class has two attributes and five methods as shown in 
Figure 7.  The vData is an instance of the class VData.  It stores 
transaction data in vertical format.  The mfi is a vector of maximal 
frequent itemsets.  The main method reads filename and minSup 
from command line and calls methods Miner, mining, and output 
sequentially.  The Miner builds an instance of this class and 
initializes vData.  The output method simply writes the mfi into a 
file.  The mining method is to mine the vData.  
Now we present the information guided depth first algorithm as in 
Figure 9.  The parameter base is the transaction set for the head of 

current node.  The tail is the possible extension of the head.  The 
ginf is the globe information passed to the node.  Note that ginf is 
a reference parameter, whose value can be updated.  The method 
returns local maximal frequent itemsets.   Line 1 calls 
vData.calSup to get the pep and an updated tails sorted in the 
increasing order of support.   Line 2 creates an instance of the 
Information class for this node.  Lines 3~8 loop selects an item 
for next node and make calls recursive call.   More specifically, it 
selects an item itm for next node as show in line 3.  If there is no 
node selected, it goes to line 9.  Otherwise, it enters the loop 
body.  A new base is calculated at line 4; the inf.DoItem method is 
called; and the new_tail is set.  Then line 7,  calls the selected sub 
node.  Upon returning from the sub node, it adds the updated 
new_ginf into the inf at line 8 and also saves the new_mfi by 
method AddMfiInf at line 9.  It returns the mfi of the node at line 
10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the node at the level 0, the local new_mfi is actually maximal 
frequent itemsets and can output directly into a file.  Since its 
information for future searching is saved by the method 
inf.AddMfiInf in line 9, there is no need to keep the new_mfi and 
the memory of new_mfi can be released. 

5. Experimental Results 
We compare SmartMiner with Mafia and GenMax. All of them 
are implemented in Java JDK1.3.  For fair comparison, the three 
methods use the same vertical data model VData.  As we 
discussed before, there are many ways to implement vertical data 
model.   In this paper, our purpose is to study the efficiency of 
different search strategies and we are not interested in comparing 
the different data models.  We choose VData since it takes less 
memory and it is easy to implement.  The experiment was 
performed on a 1Ghz Celeron with 512 MB of memory running 
Microsoft Windows 2000 Professional.   SmartMiner was tested 
with two datasets: connect-4 and mushroom.  A detailed 
comparison of SmartMiner on these datasets with Mafia and 
GenMax was conducted.    
Figure 10 shows the performance comparison of the three 
methods on Mushroom.  All the three methods implement the 
PEP pruning technique. Our running time does not include the 
input time but does include the output time.  The horizontal axis 
shows minimum support in percentage.  The vertical axis is the 

/**
* Select an item to build a sub node.
* @return >=0 if success, -1 if no next items.
*/
public short select()
1 if(tail.size()<=1)
2 if tail in infs then mfi=null else mfi=tail;
3 return -1;
4 short[] len = maxLen();
5 find the min, max position minp, maxp in len;
6 if(len[maxp]==tail.size())
7 update the ginf info;
8 return -1;
9 return tail.get(minp);

Figure 8: The selection method: a heuristic to select an item for 
partitioning the search space. 

/**
* Recursively find mfi.
* @param base The tidSet for current head.
* @param tail The possible extension of the head.
* @param ginf The global information.
* @return The local maximal frequent itemsets.
*/
private Vector infMfi(int[] base, Shorts tails,

Vector ginf)
1 short[] pep = vData.calSup(base,tails);
2 TInf inf = new TInf(ginf, pep, tails);
3 while((itm=inf.select())>=0)
4 int[] newbase = vData.getBase(base,itm);
5 Vector newginf=inf.DoItem(itm);
6 Shorts newtail=new Shorts(inf.tail);
7 Vector newmfi=infMfi(newbase,newtail,newginf);
8 inf.AddInfo(newginf);
9 inf.AddMfiInf(newmfi);
10 return inf.mfi;

Figure 9: The infMfi method--the tail information guided depth-
first search 



running time in seconds.   In general, SmartMiner is one order of 
magnitude faster than both Mafia and Genmax.  When minimal 
support is high, Mafia is faster than Genmax.  Low minimal 
support increase the number of MFI, then Genmax performs better 
than Mafia.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 compares the sizes (number of nodes in a tree) of the 
search trees for the three methods.  From the figure, we notice that 
Genmax generates 10 times more nodes than SmartMiner and also 
much more than Mafia.  This indicates that the static ordering in 
GenMax is not as efficient as the dynamic reordering used by both 
SmartMiner and Mafia. Moreover, we notice that SmartMiner 
generates less nodes than Mafia, which reveals that our 
augmented heuristic is better than a pure dynamic reordering. 
 
   
 
 
 
 
 
 
 
 
 
 
 
Figure 12 compares the number of support counting which shows 
the number of times that the private method calSup(int[] base, 
short item) in VData is called.  As in Figure 12, Genmax calls the 
calSup methods significantly more than both SmartMiner and 
Mafia.   Further, SmartMiner needs less number of support 
counting than Mafia. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since GenMax introduces a fast superset checking algorithm, the 
performance gain of dynamic reordering of Mafia is mitigated by 
the increasing time for superset checking when the set of MFI 
becomes large.  This is the reason we see in Figure 10 and Figure 
13 that Mafia is better than Genmax when minimal support is high 
and the reverse when minimal support is low. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13 shows the performance comparison of the three 
methods for Connect dataset.  Again, we notice the significant 
performance improvements of  SmartMiner. 

6. Conclusion 
In this paper, we propose the SmartMiner algorithm to find exact 
maximal frequent itemsets for large datasets.  The SmartMiner 
algorithm first uses global and local tail information to augment 
dynamic reordering to reduce the search tree.  Second, the passing 
of tail information eliminates the need of known MFI for superset 
checking. Smartminer does require superset checking that can be 
very expensive.  Finally, SmartMiner also reduces the number of 
support counting for determining the frequency of tail items and 
thus greatly saves counting time.  Our experiments reveal  that the 
SmartMiner algorithm yields an order of magnitude improvement 
over the Mafia and GenMax in generating the MFI for the same 
datasets. 

Mushroom 

Figure 10: Performance comparison on Mushroom for 
selective minimum supports. 

Mushroom 

Figure 11: Comparison of tree size on mushroom for selective 
minimum support. 

Connect

Figure 13: Performance comparison on mushroom 
for selective minimum support. 

1. Mushro 

Figure 12: Comparison of the # of support counting 
for selective minimum support. 
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