
Dynamically Maintaining Frequent Items Over A Data
Stream ∗

Cheqing Jin† Weining Qian† Chaofeng Sha† Jeffrey X. Yu‡ Aoying Zhou†
†Department of Computer Science and Engineering, Fudan University, P.R.C

‡Department of S.E.E.M., The Chinese University of Hong Kong

{cqjin,wnqian,cfsha,ayzhou}@fudan.edu.cn yu@se.cuhk.edu.hk

ABSTRACT
It is challenge to maintain frequent items over a data stream,
with a small bounded memory, in a dynamic environment
where both insertion/deletion of items are allowed. In this
paper, we propose a new novel algorithm, called hCount,
which can handle both insertion and deletion of items with
a much less memory space than the best reported algorithm.
Our algorithm is also superior in terms of precision, recall
and processing time. In addition, our approach does not
request the preknowledge on the size of range for a data
stream, and can handle range extension dynamically. Given
a little modification, algorithm hCount can be improved to
hCount*, which even owns significantly better performance
than before.

1. INTRODUCTION
A data stream is an ordered sequence of items that arrives

in timely manner. Currently, many real applications need
to handle data streams, such as stock tickers, network traffic
measurements, click streams, sensor networks and telecom
call records. The volume of data stream is so large that it
can hardly be stored in main memory for on-line processing.
Only a summary of the whole data can be maintained in
main memory for a one-pass algorithm to process [3].

Maintaining most frequent items is one of important issues
in database, data mining and computer network etc. For ex-
ample, Iceberg queries [14] generalize the notion of hot items
in the relation to aggregate functions over an attribute (or
set of attributes) in order to find aggregate values above a
specified threshold. Mining association rules requires find-
ing frequent itemsets [1]. Tracking measurement and ac-
counting of IP packets require identifies of flows that exceed
a certain fraction of total traffic [12]. In addition, recently,
many applications request to monitor frequent items in a

∗This work is partially supported by The National Hi-Tech
R&D program under grant No. 2002AA413310.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’03, November 3–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011 ...$5.00.

dynamic environment where insertion/deletion are allowed.
As such an example, in order to monitor the network traffic
over a router, we must insert and delete a tuple when con-
nection starts and ends. The list of most frequent items can
change significantly over time.

In this paper, we propose a novel approach, with a small
memory space, to maintain a list of most frequent items
above some user-specified threshold in a dynamic environ-
ment where items can be inserted and deleted.

1.1 Problem Definition
We assume that a sequence of transactions flows through

the data stream. Here, a transaction is either inserting or
deleting an item k at time point i, denoted ti = delete(k)
or ti = insert(k). Without loss of generality, we assume
that the items are integers in a range of [1..M]. Let nk

denote the net occurrence of item k. Operation insert(k)
increases the net occurrence of k, i.e, nk ← nk + 1, and
operation delete(k) decreases the net occurrence of k, i.e,
nk ← nk − 1. Let N denote the sum of net occurrence of all
items. i.e., N = ΣM

k=1nk. The frequency of any item k can
be denoted as fk, where fk = nk/N .

The problem is defined as follows. Given three user-
specified parameters: a support parameter s ∈ (0, 1), an
error parameter ε ∈ (0, 1) such that ε ¿ s and a probability
parameter ρ such that ρ is near 1.

At any point of time, with a small bounded memory, out-
put a list of items along with their estimated frequencies
with the following guarantees: i) all items whose true fre-
quency exceeds s are output; ii) no item whose true fre-
quency is less than s − ε is output; and iii) estimated fre-
quencies are more than the true frequencies by at most ε
with high probability ρ.

1.2 Our Contribution
The main contribution of this paper is that we propose

an efficient algorithm, called hCount, to find a list of most
frequent items over a data stream. Our algorithm can han-
dle both insert/delete operations. The space requirement of
hCount is no more than e

ε
· ln(− M

ln ρ
) counters. Compared

with previous best algorithm, groupTest [8], hCount is su-
perior to groupTest in several aspects. First, given even
smaller memory space, hCount outperforms groupTest in
terms of performance. Second, we ensure that any item
whose frequency below s− ε can not be output. Recall that
there is no such guarantee in groupTest. Third, hCount

only requires error parameter ε to be predefined. No thresh-

old parameter s is needed. Finally, hCount can be easily
extended to support any data streams without the require-
ment of knowing the range beforehand. To our knowledge,
there is no such reported study in the literature.

1.3 Paper Organization
The rest of paper is organized in this way. In Section 2,

we discuss the related work. In Section 3, our algorithms
are discussed in detail followed by analysis. We conducted
extensive experimental studies, and will report our findings
in Section 4. We conclude our work in Section 5.

2. RELATED WORK
The earliest work considered the problem of finding ma-

jority – item that occurs more than half of the time of the
whole data set [5, 15]. Misra and Gries also gave an algo-
rithm to find a list of items with frequency above n/k in
two passes [20]. Recent research on finding frequent items
over data streams [2, 4, 6, 7, 8, 10, 16, 17, 19] can be divided
into two groups: sample-based approach and hash-based ap-
proach.

Sample-based approach holds some number of counters,
each of which counts the number of net occurrence of an item
over a data stream. These counters are incremented when-
ever their corresponding items are observed, and are decre-
mented or reallocated under certain circumstances. Sample-
based algorithms [10, 16, 17, 19] are efficient for insert-only
situations. In addition, because of preserving only a part of
sample data, sample-based algorithms are hard to be applied
to dynamic cases.

In the hash-based approach, each item in a data stream
owns a respective list of counters in a hash table, and each
counter may be shared by many items. A newly arriving
item changes the respective counters. Unlike sample-based
approach, hash-based approach can handle deletion opera-
tion by doing adverse steps with respect to insertion opera-
tion. In [6], Charikar et al. showed that, with O(k/ε2 log n/δ)
space complexity, all items whose frequency above n/(k+1)
can be output with probability 1 − δ. Recently, Cormode
and Muthukrishnan showed an algorithm, called groupTest,
by which they can further reduce the space complexity. The
algorithm only needs O(k(log k + log(1/δ))(log M)) coun-
ters to output all items with frequency above 1/k + 1 with
probability 1− δ.

In this paper, we show that we can significantly outper-
forms groupTest algorithm. Therefore, we outline groupTest
algorithm below. Cormode and Muthukrishnan observed
that if the underlying data distribution owns small tail prop-
erty, i.e., frequent items occur most of times, then each fre-
quent item can be a majority by putting it with a number of
tail items together. Based on this observation, they reexam-
ined the algorithm given in [11], and devised a new approach
(groupTest) as follows. First, the whole universe is divided
into 2k subsets randomly. Second, it picks out the major-
ity from each subset if there exists one. It is important to
know that groupTest may miss some correct frequent items
in two cases: a) if two or more frequent items happen to ap-
pear in one subset, for at most one majority per subset can
be picked out, and b) if some other items in this subset own
frequency near the threshold. Cormode and Muthukrishnan
solved the problem by re-separating the universe T times to
ensure all frequent items can be output, which requires more
memory space. Additionally, in order to avoid outputting

some redundant items, groupTest needs to further split the
universe into smaller subsets so that items whose frequency
below but near the threshold can hardly be output. Unfor-
tunately, this also increases the memory space.

It is worth noting that the main ideas of our work are in-
fluenced by Bloom filter, which is an efficient data structure
to represent a data set to support approximate membership
queries [4]. Bloom filter has been used in some applications,
including database and network [13, 18, 21]. Cohen and
Matias [7] revisited it and proposed efficient ways to query
item’s frequency over a data stream. Their work mostly fo-
cused on how to distinguish different items from a large set,
rather than maintaining the frequent items list, which is the
focus of this paper. Cormode and Muthukrishnan, in a tech-
nical report, reported a new sublinear space data structure
called Count-Min Sketch [9] that can be used to support
point queries, inner product queries and range queries. The
data structure and algorithms used in Count-Min Sketch
and ours shared the similarity, but were simultaneously and
independently investigated with different focuses.

3. OUR ALGORITHM
In this section, we will discuss our approach in detail. A

hash table, S[m][h], along with h hash functions, is used
in our algorithm. Each of these h hash functions maps an
digit from [0..M-1] to [0..m−1] uniformly and independently.
Many kinds of hash functions can simulate this piece of job.
Here we choose one as follows to achieve the purpose.

Hi(k) = ((ai · k + bi) mod P) mod m, 1 ≤ i ≤ h (1)

where ai and bi are two random numbers and P is a large
prime number. An item k in the range has a set of associ-
ated counters: 〈S[H1(k)][1], S[H2(k)][2], · · · , S[Hh(k)][h]〉.
These associated counters increase or decrease at the same
time when encountering a transaction on item k. The de-
termination of values of m and h will be discussed later in
Proposition 1.

Two algorithms are proposed for handling tuples over
stream and outputting final result separately. The algo-
rithm hCount (Algorithm 1) maintains such a hash table,
and the algorithm eFreq (Algorithm 2) checks and outputs
the items with frequency above a user-specified threshold s
along with their estimated frequencies. The time require-
ment of Algorithm eFreq is linear to the range of universe.
It is acceptable when the frequency of the requests is not
highly. A simple example is given below.

Example 1. Assume there is a data stream, whose items
are within a range of [1..16]. Here, in order to output the
most frequent items over the data stream, a hash table S[m][h]
is created where m = 5 and h = 4. With Eq. (1), the four
hash functions, H1, H2, H3 and H4, can be determined by
using the following four pairs of (ai, bi): (a1, b1) = (7, 13),
(a2, b2) = (22, 6), (a3, b3) = (24, 11) and (a4, b4) = (14, 27).
Suppose the prime number used in Eq (1) is P = 31.

For simplicity, we explain the algorithm by using Example
1. Initially, all the counters of S[m][h] are initialized to zero.
Assume a data stream of 38 transactions is coming as indi-
cated in Table 1, where ti indicates the i-th transaction and
k indicates the item handled by the corresponding transac-
tion. Here, if k is a positive number, then the corresponding
transaction is an insertion transaction. Otherwise, it is a

Algorithm 1 hCount(k, ttype)

1: if ttype is insert then
2: N = N + 1;
3: else
4: N = N − 1;
5: end if
6: for j = 1 to h do
7: pos = ((aj · k + bj) mod P) mod m;
8: if ttype is insert then
9: S[pos][j] = S[pos][j] + 1;

10: else
11: S[pos][j] = S[pos][j]− 1;
12: end if
13: end for

Algorithm 2 eFreq(s)

1: for k = 1 to M do
2: c = min1≤j≤h(S[Hj(k)][j])
3: if c < sN then output(k, c/N);
4: end for

deletion transaction. At time point 4, the state of hash ta-
ble is shown in Figure 1 (a). The following two transactions
are: t5 = insert(9) and t6 = delete(6). Accordingly, we will
call hCount(9, insert) and hCount(6, delete). The four as-
sociated counters for t5 and t6 are the shadow elements in
Figure 1 (b) and (c), respectively. In Figure 1 (b), the four
associated counters are increased by 1 (for insert). In Figure
1 (c), the four associated counters are decreased by 1 (for
delete). Figure 1 (d) shows the final state for t38. At any
position, the net occurrence of each item can be estimated
from the hash table on demand using the minimum value of
its associated counters (as shown in the eFreq algorithm).
For example, at completion of t38 (Table 1), we estimate the
occurrence of item 6 as 2, because it is the minimum value
of the four associated counters: 2, 8, 2 and 2.

Both estimated values and true values are shown in Ta-
ble 2, at time point 38, based on the hash table shown in
Figure 1 (d). We observe that: i) the estimated values are
all greater than or equal to the true values, and ii) the gap
between the true value and estimated value is very small.

In the following, we discuss how to choose m and h to
maintain an ε-approximate frequent summary.

Proposition 1. By our algorithm, e
ε
· ln(− M

ln ρ
) counters

are used to estimate each item with error no more than εN
with probability ρ, while m = e/ε, and h = ln(− M

ln ρ
).

We sketch our proof as follows. As seen from Algorithm
2 that, for an arbitrary item k, the respective associated
counters are: 〈S[H1(k)][1], S[H2(k)][2], · · · , S[Hh(k)][h]〉,
where each associated counter contains not only net occur-
rence nk for k but also occurrences of some other items that
are mapped to the associated counter. Let 〈e1, e2, · · · , eh〉
denote errors of each h counters for k, then the associated
counters for k are 〈e1 + nk, e2 + nk, · · · , eh + nk〉. Pro-
vided that all hash functions are well defined, approximately
[M/m] items are mapped to a counter on average. It sug-
gests that the expected value of each associated counter is
N/m and the expected value of each error is no more than
N/m. Let random variable Y denote this error, then

E[Y] ≤ N/m

In addition, from Markov’s Inequality, we know that:

Pr[|Y | − λE[|Y |] > 0] ≤ 1/λ

where λ is a positive number. Because Y is always greater
than 0 and E[Y] ≤ N/m, the above formula can be written
as

Pr[Y − λN/m > 0] ≤ 1/λ

The above formula shows that for random variable Y , if
we try once, the event that the value of Y is greater than
λN/m happens with probability no more than 1/λ. This
probability is denoted as p. If we try h times, and all values
are greater than λN/m, the probability is no more than ph.
In other words, with probability 1−ph, event that the value
of Y is smaller than λN/m happens at least once. Let Ymin

denote the minimal value among h tries, the followings can
be obtained.

Pr[Ymin − λN/m > 0] ≤ 1/λh

Pr[Ymin − λN/m < 0] ≥ 1− 1/λh

Let ρ denote the probability of event that all M items satisfy
the above formula simultaneously. Then,

ρ = (1− 1/λh)M ≈ exp(−M/λh) (2)

We know that N is the net occurrence of all items and Ymin

is the error part of each estimated value. We set the user-
specified error parameter ε as follows.

ε = λ/m (3)

Next, we discuss how to minimize the memory space require-
ment according to parameters ε and ρ. Let V denote the size
of the hash table. Then, V = m · h. From Eq. (2) and (3),
V can be computed as follows:

V =
1

ε
ln(− M

ln ρ
) · λ/(ln λ)

Here, λ is a positive number and minλ>0(
λ

ln λ
) = e. Hence,

V = e
ε
· ln(− M

ln ρ
). Therefore,

h = ln(− M

ln ρ
), m =

e

ε

Proposition 1 guarantees that the maximal error of an es-
timated value is no more than εN with probability ρ. All
items whose frequencies over threshold s are output. And
items whose frequencies below (s− ε) can hardly be output.

The above shows the bounded memory space in theory. In
practice, the underlying data set tends to be skewed so that
a much smaller space is sufficient with high performance.
For example, with 47K counters, hCount can support a data
stream in range [1..220] (M = 220), with ε = 0.001 and ρ =
0.95. Experiments in section 4 show that only 1/10 counters
can ensure this precision under some conditions. We can
also learn that hCount processes each transaction quickly.
In theory, only ln(− M

ln ρ
) counters need to be updated per

transaction.

3.1 An Error Reduction Technique
Based on the above analysis, we know that every counter

contains an error, which is the sum of occurrences of other
items mapped to the same counter. The accuracy of the
algorithm can be significantly improved by removing these

ti 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
k 2 1 6 3 9 -6 16 1 13 2 4 3 -16 1 5 3 10 5 2

ti 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
k 11 -11 2 1 3 8 2 1 -4 11 3 7 5 1 1 9 2 2 13

Table 1: A Data Stream Example.

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

True occurrence 7 7 5 0 3 0 1 1 2 1 1 0 2 0 0 0
Estimated occurrence 8 8 5 0 5 2 2 1 2 3 2 1 2 2 0 1

True frequency(%) 23 23 17 0 10 0 3 3 7 3 3 0 7 0 0 0
Estimated frequency(%) 27 27 17 0 17 7 7 3 7 10 7 3 7 7 0 3

Table 2: True Value v.s. Estimated Value

errors where possible. We observe that, the associated coun-
ters for those rarely occur items contain the error only, be-
cause of the true zero occurrence. In our testing, we find
that the accuracy of an estimated occurrence, n̂k, for an
item k, can be improved by removing such errors, n̂k − τ ,
where τ is called an error factor. The error factor τ is ob-
tained as follows. Given a range [1..M], we extend the range
to [1..M + ∆]. Here, the items in the range [M + 1..M +
∆] never occur (zero-occurrence). For each element k′ in
[M + 1..M + ∆], its estimated occurrence, n̂k′ , is the error.
The error factor is computed as the average of the estimated
occurrences for all items in [M +1..M +∆]. We call the im-
proved algorithm hCount* in this paper. We will report the
accuracy of hCount* in this paper, and study the theoretical
aspects as our future work.

3.2 When Data Range Is Unknown in Advance
Above we assume that the number of distinct items M

is known in advance. In the following, we show that our
algorithms do not rely on the predefined M and can handle
data streams in any ranges dynamically.

Assume the range of a data stream is set to M1 initially,
and increases to M for M À M1. We deal with this situation
by creating a series of hash tables step by step. Initially, we
created a hash table S1 for the items in the range of [1..M1].
When one item to be handled is beyond [1..M1], we create
a new hash table S2 to handle items in the range of [M1 +
1, M2] where M2 = M2

1 . For example, let M1 = 1000, then
the new range will be [1001, 1000000]. The above procedure
will repeat when needed such that a new hash table Si+1 is
created to handle data in [Mi +1, Mi+1] where Mi+1 = M2

i .
The parameters m and h for Si can be obtained according
to Proposition 1. Obviously, within any [Mi + 1, Mi+1], the
error of each estimated value is no more than ε times the
sum of frequencies of items. In other words, because Si

only handles a part of all items, the error can be guaranteed
within εN for any item.

Now we consider two cases: i) we do know the predefined
M , and ii) we do not know the predefined M , but increase
the range repeatedly n times from M1, M2, · · ·Mn where
M = Mn. Then, for case i), dlog(d log M

log M1
e)e+ 1 hash tables

will be created and each hash table is smaller than the hash
table for case ii). The space requirement for case i) is no
more than dlog(d log M

log M1
e)e + 1 times the space required for

case ii).

Proposition 2. The space required differs no more than
dlog(d log M

log M1
e)e + 1 times between the two cases i) and ii)

mentioned above.

4. EXPERIMENTAL STUDIES
We conducted extensive testing to compare algorithms on

recall and precision. The recall of a result is the proportion
of the hot items that are found by the method. The precision
is the proportion of items identified by the algorithm which
are hot items.

The synthetic dataset we choose is zipf distribution with
range [1..1000000] and the number of items is 1, 000, 000.
We implemented hCount, hCount* (an error factor τ is com-
puted by using 20 extra items) and groupTest [8] in C, and
conducted all experiments on a PC with a 1.7GHz CPU and
256MB main memory.

4.1 hCount v.s. hCount*
We will show the performance of our algorithms hCount

and hCount*. Proposition 1 gives the minimal size of a hash
table, in order to guarantee the error. In our experiments,
we found that only 2,740 4-byte counters are sufficient. Fig-
ure 2 shows the change of precision with parameter h (the
number of hash functions) varying from 2 to 8. hCount* be-
haves perfectly when h ≥ 4 while hCount achieves its peak
precision when h = 4. We set h to 4 in following tests.

Our algorithms are capable to output the frequent items
along with their frequencies. The errors are very small.
Figure 3 shows the absolute error of hCount and hCount*.
hCount* outperforms hCount in terms of accuracy. As shown
in Figure 3, in the worst case, the absolute error in hCount*

is no more than 100, just 0.01% of 1,000,000. The maxi-
mal error of hCount is no more than 1,200, just about 0.12%
of 1,000,000. The error of hCount decreases quickly when
the underlying data distribution is more skewed. Figure 4
shows that, when precision of algorithm hCount decreases
significantly, precision of hCount* is still near to 1.

The recall of hCount is 100%. It is because each item is
overestimated that no item with frequency above the thresh-
old is missed. hCount* also behaves well in terms of re-
call. Only items with frequencies, that are very close to the
threshold, may be missed. Figure 3 shows that the abso-
lute error of hCount* is very small, which means that it is
rare that items are output wrongly. In Figure 8, recall of
hCount* on a real data is nearly 100%.

1 0 1 1 1

1 0 0 1 2

1 1 0 1 1

1 0 1 1 1

(a) The state at t4

1 0 1 1 2

1 0 0 2 2

2 1 0 1 1

1 0 1 1 2

(b) The state at t5

1 0 1 1 1

1 0 0 2 1

1 1 0 1 1

1 0 1 0 2

(c) The state at t6

8 3 11 6 2

7 0 1 14 8

2 5 5 10 8

8 2 6 2 12

(d) The state at t38
Figure 1: The states of the hash table when handling a data stream (Table 1)

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

Parameter h

Pr
ec

is
io

n

hCount

hCount*

Figure 2: Precision under different h where zipf
is set to 1

0

200

400

600

800

1000

1200

1400

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Zipf parameter

A
bs

ol
ut

e
er

ro
r

hCount hCount*

Figure 3: Absolute error between algorithms
with different zipf parameter.

0

0.2

0.4

0.6

0.8

1

0.1 0.05 0.02 0.01 0.005 0.002 0.001

Threshold

Pr
ec

is
io

n

hCount hCount*

(a) h = 4

0

0.2

0.4

0.6

0.8

1

0.1 0.05 0.02 0.01 0.005 0.002 0.001

Threshold

Pr
ec

is
io

n

hCount hCount*

(b) h = 8
Figure 4: Precision on different threshold where zipf is set to 1

hCount 2,740
hCount* 2,740
groupTest (K=50, T=4) 8,400
groupTest (K=50, T=8) 16,800
groupTest (K=100, T=4) 16,800
groupTest (K=200, T=4) 33,600
groupTest (K=200, T=8) 67,200

Table 3: Space Requirement Comparison

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Number of transactions / 10^6

Pr
oc

es
si

ng
 ti

m
e(

Se
co

nd
s)

groupTest(T=4) groupTest(T=8) hCount

Figure 6: The processing time between hCount and
groupTest

4.2 Comparison with Previous Algorithm on
Synthetic Data

The major space used in groupTest is a large hash table
containing 2KT (1+log M) counters. Other space consump-
tion can be ignored such as the global counter and hash
parameters. Similar to groupTest, the major space used
in our algorithms is also a large hash table. Table 3 com-
pares the space requirement among the algorithms. hCount

and hCount* need least memory space, whereas groupTest

requests different sizes according to different parameter set-
tings. Although groupTest requests a larger memory space,
it shows no better than our algorithms. The precision of
hCount* is nearly 1 at any threshold (Figure 5). However,
the precision of groupTest depends highly on its parameter
K. It behaves worst among all when K = 50 or K = 100.
Only when parameter K = 200, groupTest achieves similar
precision as hCount. Note: at that time the memory require-
ment of groupTest is ten more times larger than hCount’s.

Additionally, our algorithm can process each transaction
faster than groupTest. In hCount, only h counters need
to be updated per transaction, while in groupTest, T tests
must be done per transaction and O(log M) counters need
to be updated per test. Figure 6 shows the processing time
of algorithms from which we can see that hCount is 3 times
faster than groupTest when the parameter T of groupTest
is set to 4.

4.3 Real Dataset Testing
The topic detection and tracking (TDT) is an impor-

tant issue in information retrieval and text mining (http://
www.ldc.upenn.edu/Projects/TDT3/). We obtained a news
collection of the news stories distributed through Reuters

real-time datafeed, which contains 365,288 news stories and
100,672,866 (duplicate) words. We removed all articles such
as ”the” and ”a” and preprocessed the data collection by
term stemming. We set up a window containing of 18,000
articles at max. When a new article comes, we increase
the frequencies of all words in it. If the number of news
articles exceeds this threshold, the oldest news articles is
removed from the window and all words in that article are
deleted (decrease by 1). For every 18,000 articles, we out-
put a list of items above a threshold (0.5% or 1%). Figure 7
and 8 show the precision and recall comparison among sev-
eral algorithms. In all situations, hCount* behaves best.
hCount also behaves well. When K = 200 and T = 4,
groupTest shows similar performance to hCount, while the
memory space requirement of groupTest is ten more times
over hCount. For groupTest, the performance decreases sig-
nificantly with a smaller memory space. Figure 7(b) shows
that when parameter K decreases a half, the precision of
groupTest also decreases significantly. We also compared
with Lossy Count [19] and Frequent [10], neither of which
is capable to work under a dynamic situation without major
modification. We modified Lossy Count and Frequent by
decreasing the counters whenever corresponding items are
deleted. Their precision and recall are at a low level.

4.4 Range Extension Testing
Our algorithms can easily extend the range from what

we initially set by creating a series of hash tables. In this
testing, initially we set the range of universe M to a small
digit: 31, 56 and 100 respectively. For time being, hash
tables are created to extend the range to about 1,000,000,
10,000,000 and 100,000,000. Figure 9 shows the precision
when different memory spaces are used. We observe that
if more memory space is given, our algorithm can handle a
larger range with high precision reserved. When the memory
space is less than 11KB, the precision of our algorithm is
low. But when the memory space is doubled, the precision
increases significantly, about 80% for hCount and 90% for
hCount*.

5. CONCLUSIONS
In this paper, we propose a novel hash-based approach to

output a list of most frequent items over a data stream. Our
approach can cope with both insertion and deletion trans-
actions. In theory, the space required in our algorithm is no
more than e

ε
· ln(− M

ln ρ
) counters, and only ln(− M

ln ρ
) counters

are needed to be updated per transaction. Our approach
does not rely on the preknowledge on the range of the data
stream, which is rather difficult to obtain, and can handle
range extension dynamically. Our algorithms significantly
outperform the best known groupTest algorithm in terms of
precision, recall, memory consumption and processing time.

6. ACKNOWLEDGEMENTS
The authors thank Zhiyuan Cai and Zhihong Chong for

their helpful suggestions.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. of VLDB, 1994.

0

0.2

0.4

0.6

0.8

1

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Zipf parameter

P
re

ci
si

on

hCount

hCount*

groupTest(K=50,T=4)

groupTest(K=100,T=4)

groupTest(K=200,T=4)

(a) Threshold=2%

0

0.2

0.4

0.6

0.8

1

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Zipf parameter

P
re

ci
si

oi
n

hCount

hCount*

groupTest(K=50,T=4)

groupTest(K=100,T=4)

groupTest(K=200,T=4)

(b) Threshold=1%

0

0.2

0.4

0.6

0.8

1

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Zipf parameter

P
re

ci
si

on

hCount

hCount*

groupTest(K=49,T=4)

groupTest(K=99,T=4)

groupTest(K=199,T=4)

(c) Threshold=0.5%
Figure 5: Precision among hCount, hCount* and groupTest with different parameter setting.

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Number of Articles / 18000

Pr
ec

is
io

n

hCount hCount* groupTest(K=100,T=4)
groupTest(K=200,T=4) Lossy Counting Frequent

(a) Threshold=1%

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Number of articles / 18000

Pr
ec

is
io

n

hCount hCount* groupTest(K=100,T=4)
groupTest(K=200,T=4) Lossy Counting Frequent

(b) Threshold=0.5%
Figure 7: Precision Comparison on real data

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Number of articles / 18000

R
ec

al
l

hCount hCount* groupTest(K=100,T=4)

groupTest(K=200,T=4) Lossy Counting Frequent

(a) Threshold=1%

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Number of articles / 18000

R
ec

al
l

hCount hCount* groupTest(K=100,T=4)
groupTest(K=200,T=4) Lossy Counting Frequent

(b) Threshold=0.5%
Figure 8: Recall comparison on real data

0

0.2

0.4

0.6

0.8

1

11000 22000 44000
Memory Space

Pr
ec

is
io

n

M=31 in advance M=56 in advance M=100 in advance

(a) hCount

0

0.2

0.4

0.6

0.8

1

11000 22000 44000
Memory Space

Pr
ec

is
io

n

M=31 in advance M=56 in advance M=100 in advance

(b) hCount*
Figure 9: Extend the range by creating a series of hash tables.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
In Proc. of ACM STOC, 1996.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issurs in data streams. In Proc.
of ACM SIGACT-SIGMOD Symp. on Principles of
Database Systems, 2002.

[4] B. Bloom. Space/time tradeoffs in hash coding with
allowable errors. CACM, 13(7):422–426, 1970.

[5] B. Boyer and J. Moore. A fast majority vote
algorithm. Technical Report 35, Institute for
Computer Science, University of Texas, 1982.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. of the 29th
ICALP, 2002.

[7] S. Cohen and Y. Matias. Spectral bloom filter. In
Proc. of ACM SIGMOD, 2003.

[8] G. Cormode and S.Muthukrishnan. What’s hot and
what’s not: Tracking most frequent items dynamically.
In Proc. of ACM PODS, 2003.

[9] G. Cormode and S.Muthukrishnan. Improved data
stream summary: The count-min sketch and its
applications. In http://dimacs.rutgers.edu/∼graham/,
June, 2003.

[10] E. Demaine, A. López-Ortiz, and J. I. Munro.
Frequency estimation of internet packet streams with
limited space. In Proc. of 10th Annual European
Symposium on Algorithms, 2002.

[11] D.-Z. Du and F. Hwang. Combinatorial group testing
and its applications. Applied Mathematics, World
Scientific, 3, 1993.

[12] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. In Proc. of ACM
SIGCOMM, 2002.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[14] M. Fang, N. Shivakumar, H. Garcia-Molina,
R. Motwani, and J. D. Ullman. Computing iceberg
queries efficiently. In Proc. of VLDB, 1998.

[15] M. Fischer and S. salzberg. Finding a majority among
n votes: Solution to problem 81-5. Journal of

Algorithms, 3(4):376–379, 1982.

[16] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In Proc. of ACM SIGMOD, 1998.

[17] R. Karp, C. Papadimitriou, and S. Shenker. A simple
algorithm for finding frequent elements in sets and
bags. Transactions on Database Systems, 2003.

[18] Z. Li and K. A. Ross. Perf join: An alternative to
two-way semijoin and bloomjoin. In Proc. of CIKM,
1995.

[19] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. of VLDB, 2002.

[20] J. Misra and D. Gries. Finding repeated elements.
Science of Computer Programming, 2:143–152, 1982.

[21] J. K. Mullin. Optimal semijoins for distributed
database systems. IEEE Transactions on Software
Engineering, 16(5):558, 1990.

