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Abstract 
In this paper, we first define a difference measure between the old and new sequential 
patterns of stream data, which is proved to be a distance. Then we propose an experimental 
method, called TPD (Tradeoff between Performance and Difference), to decide when to 
update the sequential patterns of stream data by making a tradeoff between the performance 
of increasingly updating algorithms and the difference of sequential patterns. The experiments 
for the incremental updating algorithm IUS on two data sets show that generally, as the size 
of incremental windows grows, the values of the speedup and the values of the difference will 
decrease and increase respectively. It is also shown experimentally that the incremental ratio 
determined by the TPD method does not monotonically increase or decrease but changes in a 
range between 20 and 30 percentage for the IUS algorithm. 
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1. Introduction 

To enhance the performance of algorithms of data mining, many researchers [1,2,3,4,5,6,7] 
have focused on increasingly updating association rules and sequential patterns. But if we 
update association rules or sequential patterns too frequently, the cost of computation will 
increase significantly. For the problem above, Lee and Cheung [8] studied the problem 
�Maintenance of Discovered Association Rules: When to update?� and proposed an algorithm 
called DELL to deal with it. The important problem of �When to update� is to find a suitable 
distance measure between the old and new association rules. In [8], the symmetric difference 
was used to measure the difference of association rules. But Lee and Cheung only considered 
the difference of association rules, and did not consider that the performance of increasingly 
updating algorithms will change with the size of added transactions. Ganti et al. [15,16] 
focused on the incremental stream data mining model maintenance and change detection 
under block evolution. However, they also didn�t consider the performance of incremental 
data mining algorithms for the evolving data. 

Obviously, with the increment of the size of incremental windows, the performance of 
incremental updating algorithms will decrease. If the difference between the new and old 
sequential patterns is too high, the size of incremental window will become too large, 
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therefore the performance of incremental updating algorithm will be reduced greatly. On the 
other hand, if the difference is too small, the incremental updating algorithm will update the 
old sequential patterns very frequently, which will also consume too many computing 
resource. In all, we must make a tradeoff between the performance of the updating algorithms 
and the difference of the sequential patterns. In this paper, we use the speedup as a measure of 
incremental updating algorithms and define a metric distance as the difference measure to 
detect the change of the sequential patterns of stream data. Based on those measures, we 
propose an experimental method, called TPD (Tradeoff between Performance and Difference), 
to estimate the suitable range of the incremental ratio of stream data by making a tradeoff 
between the performance of the increasingly updating algorithm and the difference of 
sequential patterns. 

By the TPD method, we estimate the suitable range of incremental ratio of stream data 
for the incremental updating algorithm IUS [21]. The experiments on two data sets in Section 
5 show that generally, as the size of incremental windows grows, the values of the speedup 
and the values of the difference will decrease and increase respectively. By the experiments, 
we can discover that as the size of original windows increases, the incremental ratio 
determined by TPD method does not monotonically increase or decrease but changes in a 
range between 18 and 30 percentage for the IUS algorithm. 

The rest of this paper is organized as follows. In Section 2 we compare our work with the 
related work of the incremental mining for stream data. Section 3 formally gives the notion 
and definitions in this paper and defines the difference measure between the old and new 
sequential patterns. In Section 4, by making a tradeoff between the performance of 
increasingly updating algorithm and the difference of sequential patterns, we propose a 
method, called TPD (Tradeoff between Performance and Difference), to decide when to 
update sequential patterns of stream data. We experimentally verify the proposed method on 
two sets of GSM alarm data in Section 5. Finally, we give the conclusion in Section 6. 

2. Related work 

Lee and Cheung studied the problem of �When to update association rules� to avoid the 
overhead updating the rules too frequently in [8]. But they only studied updating association 
rules in the transaction data, while we focus on studying when to update the sequential 
patterns of stream data. They used the ratio |L∆L`|/|L as the difference measure of association 
rules, but in this paper we not only define a difference measure of sequential patterns but also 
prove that this measure is a distance. 

In [9], Agrawal et al. proposed an indexing method for time sequences for processing 
similarity queries, which uses the Discrete Fourier Transform (DFT) to map time sequences 
to the frequency domain. In [10], Agrawal proposed a new model of similarity of time 
sequences that captures the intuitive notion that two sequences should be considered similar if 
they have enough non-overlapping time-ordered pairs of subsequences those are similar. 

In [11], Datar et al. studied the problem of maintaining aggregates and statistics over data 
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streams, proposed the sliding window model and formulated the basic counting problem 
whose solution can be used as a building block for solving most of the problems. 

Mannila et al. [13] used an edit distance notion for measuring the similarity of events 
sequences, which is defined as the cost of the cheapest possible sequence of operations that 
transforms a sequence to another. The edit distance can be computed using dynamic 
programming algorithm. Later Mannila and Seppanen [14] described a simple method for 
similarity search in sequences of events, which is based on the use of random projections. Das 
et al. [12] also introduced the notion of an external measure between attribute A and attribute 
B, defined by looking at the values of probe functions on sub-relations defined by A and B.  

Ganti et al. [15] studied the incremental stream data mining model maintenance and 
change detection under block evolution. They adopted the FOCUS framework [16] for 
change detection, which measures the deviation between two datasets first by the class of 
decision tree models and then by the class of frequent itemsets. 

Domingos and Hulten [17] introduced Hoeffding trees and proposed a method for 
learning online from the high-volume data streams that are increasingly common, called 
VFDT (very Fast Decision Tree learner). Later Hulten et al. [18] proposed an efficient 
algorithm for mining decision trees from continuously-changing data streams, based on the 
ultra-fast VFDT decision tree learner, which was called CVFDT. Corters and Preginbon [19] 
have discussed the statistical and computational aspects of deploying signature-based 
methods in the applications of telecommunications industry. 

3. Problem Definition 

3.1. Stream data model 

An stream tuple and its length, An stream queue and its length, An stream viewing 
window and its size 
1.) An stream event is defined as Ei=<ei, tn>,  i, n=1,2,3,�, where ei is an stream event 

type, including alarm event type, call details record type, financial market data type etc. 
and tn is the time of stream event type occurring. 

2.) An stream tuple is defined as Qi=( ( ek1, ek2, �� ,  ekm), ti ), i,m=1,2,3,�; 
k1,k2,�,km=1,2,3,� , where �ek1, ek2,��,  ekm� are the stream event types which 
concurrently occur at the time ti . An stream tuple can be represented by an stream event 
i.e. Qi=(< ek1, ti>,< ek2, ti> ,��, <ekm, ti>)=( Ek1, Ek2, �.. , Ekm). If an stream tuple Qi 
only contains one stream type, then Qi=(( ek1), ti)=( < ek1, ti>)= Ek1. 

3.) The length of stream tuple is |Qi|=|( ek1, ek2, ��, ekm)|=m, which is the number of the 
stream event types contained in the stream tuple.  

4.) An stream queue is defined as Sij=<Qi, Qi+1,�, Qj> i,j=1,2,3,�, where  ti< ti+1 <�<tj . 
An stream queue can be represented by an stream event i.e. Sij=<Qi, Qi+1,�,Qj>=< (Ei1,.., 
Eik), (Ei+1),�, (Ej1, �, Ejm)>= < (Ei1,�, Eik), Ei+1,�, (Ej1, �, Ejm)>,  i1,�,ik ,j1,�, 
jm=1,2,3,�  .  

5.) The length of stream queue is defined as | Sij|=|<Qi, Qi+1, �, Qj>|=j-i+1, which is equal 
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to the number of stream tuple contained in stream queue. 

6.) An stream viewing window is defined as Wk=<Qm, �, Qn|d=n-m+1>, where n≥m; 
k,m,n=1,2,3,� . 

7.) The size of stream viewing window is defined as |Wk|=|<Qm,�, Qn|d=n-m+1>|=d , 
where k,m,n=1,2,3,� . 

8.) Given an sequence seqm =< ei1, ei2,�,eim > and an stream viewing window Wk, the 
times of the sequence seqm occurring in the Wk are defined as  

                  occur (seqm, Wk)=| the times of seqm occurring in Wk | 
 
9.) Given an sequence seqm =< ei1, ei2,�,eim >, the support of the sequence seqm in an 

stream viewing window Wk is defined as   

|W|
)W,seq(occur

)W,seq(support
k

km
km =  

Obviously, we have |W|)W,qsupport(se)W,occur(seq kkmkm ×=  

 

 

 

 

 

 

 
Example 1 Figure 1 presents graphically an stream queue S18=< Q1, Q2, Q3, Q4, Q5, Q6, Q7, 
Q8>. The time of stream tuple Q1 , Q2, � , Q8  is that t1< t2 , � ,< t 8 .In Figure 1, the stream 
queue S18 can also be denoted by the stream event, S18=<E2, E5, E1, (E3 , E6), E7, E9, E7, E10>. 
An stream viewing window is W5=< Q1, Q2 , Q3, Q4, Q5, Q6, Q7 | d=7> and the size of the 
window is |W5|=7. 

3.2. Sliding stream viewing windows on the stream queue 

 
In Figure 2, Given stream view window Wi (i=0,1,2,3, �), ∆Wi (i=0,1,2,3, �) is called 
incremental window, when i=0, ∆W0 is called initial window, where Wi+1=Wi+∆Wi+1 
(i=0,1,2,3, �). The ratio of the size of incremental window to that of the initial window, i.e. 
|∆W1|/|W0|, is called incremental ratio of stream data. 

 
 

 
 
 

Figure 1. A stream queue 
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3.3. Estimation of the difference between the old and new sequential patterns 

Before updating the frequent sequences KWL  in Wk, we must estimate the difference between 
KWL  and 1+KWL . If the difference is very large, then we should update the sequential patterns 

as soon as possible. But if the difference is very small, then we do not need to update the 
sequential patterns. In order to measure the difference between the old and new frequent 
sequence sets, we can define a measure as follows 

||
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where 1+∆ KK WW LL is the symmetric difference between KWL  and 1+KWL .  
We know that a measure is not necessarily a metric. A metric distance must satisfy the 

triangle inequality which means that for three objects A, B and C in the metric space, the 
distance between A and C is greater than the distance between A and B plus the distance 
between B and C. This property is also useful in measuring the differences between frequent 
sequences because that for three frequent sequences Lw1, Lw2 and Lw3, if both the difference 
between Lw1 and Lw2 and the difference between Lw2 and Lw3 is very small, then, intuitively, 
the difference between Lw1 and Lw3 should also be small. If a difference measure between 
frequent sequences is a metric, then it follows from the triangle inequality that the above 
property holds. For the measure defined above, we can prove that it is also a metric (please 
see Appendix A). 

4. The TPD (Tradeoff between Performance and Difference) method of 
deciding when to update sequential patterns  

Lee and Cheung [8] only considered the difference between the old and new association rules, 
but that they didn�t consider the change of the performance of incremental updating 
algorithms. As mentioned before, too large difference between the new and old sequential 
patters will result in poor performance of incremental updating algorithms, while too small 
difference will increase the computations lose significantly. Therefore, we must make a 
tradeoff between the difference of frequent sequences and the performance of increasingly 

Figure 2. Sliding Windows  
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updating algorithms and find the suitable range of the incremental ratio of stream data. 
We propose an experimental method, called TPD (Tradeoff between Performance and 

Difference), to find the suitable range of incremental ratio of the initial window for deciding 
when to update sequential patterns of stream data. The TPD method uses the speedups as the 
measurement of incremental updating algorithms and adopts the measure defined in Section 
3.3 as the difference between the new and old sequential patterns of stream data. With the 
increment of the size of incremental window, the speedup of the algorithm will decrease, 
while the difference of the old and new sequential patterns will increase. According to two 
main factors of the incremental updating algorithms, the TPD method maps the curve of the 
speedup and the difference changing with the size of incremental windows into the same 
graph under the same scale, and the points of intersection of the two curves are the suitable 
range of the incremental ratio of the initial windows for the increasingly updating algorithm. 

In this paper, by the experiments in Section 5, we study the suitable range of incremental 
ratio of the initial windows for the incremental updating algorithm: IUS [21] by TPD 
(Tradeoff between Performance and Difference) method. In the experiments, the speedup 
ratio of the IUS algorithm is defined as speedup=the execution time of Robust_search / the 
execution time of IUS, where Robust_search is an algorithm to discover sequential patterns 
from stream data [20] and IUS is an increasingly updating sequential patterns algorithm based 
on Robust_search algorithm [21]. We use the distance i.e. d(LWk,LWk+1 ) defined above as the 
difference measure between the old frequent sequences LWk and the new frequent sequences 
LWk+1.  

The experiments of Section 5 show that generally, as the size of incremental windows 
grows, the values of the speedup and the values of the difference will decrease and increase 
respectively. By making data transform, called Min-max normalization [22], for the values of 
the speedup and the difference, we can map the speedup and the difference with the increment 
of the size of incremental windows into the same graph under the same scale, and then from 
the graph we can find the intersection point of two lines, obviously, by which we can compute 
the suitable range of incremental ratio of the initial window to update sequential patterns 
according to the differences and speedups mentioned above. 

The Robust_search Algorithm does compute the support of sequences in the stream queue 
[20], especially, which can search the support of sequences from stream queue containing 
noise data. But because we mainly study the problem of when to update sequential patterns, 
we only consider the condition that the stream queue doesn�t contain noise data in this paper. 

The following is IUS (Incrementally Updating Sequences) algorithm proposed in [21]. In 
this paper, we rewrite the IUS algorithm using the stream data model. The input of the 
algorithm is the window Wk, , the incremental window ∆Wk+1, and two parameters: Min_supp 
and Min_nbd_supp, where Wk+1= Wk+∆Wk+1. The output of the algorithm is the frequent 

sequences 1+KWL  and the negative border sequences NBD(Wk+1). 
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Algorithm 1 . IUS(Incrementally Updating Sequences)  
Input:  Frequent sequences set L Wk, NBD(Wk),L∆Wk+1, NBD(∆Wk+1), where Wk+1= Wk+∆Wk+1, 

 Min_supp, Min_nbd_supp 
Output: Frequent sequences set: L Wk+1, Negative border sequences set: NBD(Wk+1). 
1. Generate L1

 Wk+1 from L1 Wk , L1
∆Wk+1, NBD(Wk),NBD(∆Wk+1); 

2. m=2; L_Size=0; 
3. while  ((|L Wk+1 | - L_Size)>0)  
4. Begin 
5. L_Size=| L Wk+1 | 
6. For all  seqm ∈ L Wk  and  all subsets of seqm are frequent in Wk+1 
7. { 
8.  If (seqm∈ L∆Wk+1)  Get occur(seqm , ∆Wk+1) from L∆Wk+1 ; 
9.      Else If (seqm∈ NBD(∆Wk+1))  Get occur(seqm , ∆Wk+1) from NBD(∆Wk+1); 
10.        Else search  occur(seqm , ∆Wk+1) in ∆Wk+1 ;  /* compute frequent sequence in LDB*/ 
11. If ((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_supp•  | Wk+1|))  
12.                  Insert  seqm  into  L Wk+1; 
13.      else { Prune the seqm and the sequence containing seqm from Lwk and NBD(Wk); 
14.              If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp•  |Wk+1|))   
15.                                           Insert seqm into NBD(Wk+1);  
16.          }  
17.  }  
18. For all seqm∈ L∆Wk+1 and seqm ∉ LWk and all subsets of seqm are frequent in Wk+1 

Wk:    The original stream view window which contains old time-related data.  
∆Wk+1: The increment stream view window which contains new time-related data. 
Wk+1:  The updated stream view window. When stream data being increasingly updated, the

total set of data which are equal to Wk+∆Wk+1  
Support(F, X): the support of  the sequence F in the X stream view windows, where X ∈

{ Wk+1 ,Wk, ∆Wk+1}. 
Min_supp :Minimum support threshold of the frequent sequence. 
Min_nbd_supp: Minimum support threshold of negative border sequence. 
CX:    Candidate sequences in X stream view windows, where X ∈  { Wk+1 ,Wk, ∆Wk+1}. 
LX :    Frequent sequences in the X stream view windows, where X ∈  { Wk+1 ,Wk, ∆Wk+1}. 
NBD(X)=CX- LX, where NBD(X) consists of the sequences in X stream view windows whose

sub_sets are frequent, its Support is lower than Min_supp and greater than

Min_nbd_supp. Note that X ∈  {Wk+1 ,Wk, ∆Wk+1} 

Figure 3. The Notions in IUS Algorithm
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19.  { 
20.   If(seqm∈ NBD(Wk)) Get occur(seqm , Wk) from NBD(Wk); 
21.       Else search  occur(seqm , Wk)  in Wk ;/* compute frequent sequence in L∆Wk+1 */ 
22.   If( (occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_supp•  |Wk+1|) ) 
23.                                Insert  seqm  into  LWk+1 ; 
24.       else { Prune the seqm and the sequence containing seqm from L∆Wk+1 and NBD(∆Wk+1); 
25.                  If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp•  | Wk+1|))   
26.                                                  Insert seqm into NBD(Wk+1); 
27.                 }  
28.  } 
29.  For all seqm∈ NBD(Wk) and seqm ∉ L∆Wk+1 and seqm ∉ NBD(∆Wk+1) 
30.     and  all subset of seqm are frequent 
31.  {   Search  occur(seqm , ∆Wk+1)  in  ∆Wk+1; 
32.      If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp•  | Wk+1 |))  
33.                                      insert seqm  into  NBD(Wk+1); 
34.  }  
35. For all seqm∈ NBD(∆Wk+1) and seqm∉ LWk and seqm∉ NBD(Wk)  
36.    and all subset of seqm are frequent 
37.    {    Search  occur(seqm , Wk)  in  Wk 
38.         If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp• |Wk+1|))  
39.                                   insert  seqm  into  NBD(Wk+1); 
40.    } 
41.  / * generate new negative border from L∆Wk+1 and LWk  */ 
42.   generate Negative Border NBDm( Wk+1 ). from LWk+1

m-1;   /* Algorithm 1_1 */ 
43. m=m+1; 
44. end.  /* end of while */  
 

5. Experiments 

 
We conducted a set of experiments to find when to update sequential patterns for stream data. 
The experiments were on the DELL PC Server with 2 CPU Pentium II, CPU MHz 
397.952211, Memory 512M, SCSI Disk 16G. The Operating system on the server is Red Hat 
Linux version 6.0. 

The data_1 in experiments are the alarms in GSM Networks, which contain 194 alarm 
types and 100k alarm events. The time of alarm events in the data_1 range from 
2001-08-11-18 to 2001-08-13-17. The data_2 in experiments are the alarms in GSM 
Networks, which contain 171 alarm types and 100k alarm events. The time of alarm events in 
the data_2 range from 2001-08-07-09 to 2001-08-09-12.  

In the experiments, we compare the execution time of the IUS algorithm with that of the 
Robust_search algorithm [21] in the view window Wi. The speedup ratio is defined in Section 
4. We also use the distance in Section 3.3 as the difference measure between the sequential 
patterns of Wk and Wk+1. 
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Figure 4.Experiment 1 on Data_1 |Initial window|=20k 
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Figure 7. Experiment 4 on Data_2  |Initial window|=40K 

Figure 6. Experiment 3 on Data_1  |Initial window|=40K
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Figure 8. Experiment 5 on data_1  |Initial 
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Figure 9. Experiment 6 on data_2  |Initial window|=50K 
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Figure 10. Experiment 7 on Data_1  |Initial window|=60K 
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Figure 11. Experiment 8 on Data_2 |Initial window|=60K 
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The Speedup graph in Figure 4, 5, �, 11 is the speedup of IUS Algorithm [20] to the 
Robust_search Algorithm [21] with the size of incremental windows. The Difference graph in 
Figure 4, 5 , �, 11 is the difference measure of frequent sequences between the initial 
window and the incremental windows with the size of incremental windows. Mapping the 
Speed and difference graphs into the same scale graph forms Mapping graph in Figure 4, 
5, � , 11.  

In order to make the speed graph and difference graph have the same scale, we adopt the 
data normalization methods called Min-max normalization [22], which performs linear 
transformation of the origin data. Suppose that minA and maxA are the minimum and 
maximum values of an attribute A. Min-max normalization maps a value ν of A to ν` in the 
range [new_minA, new_maxA] by computing 

( ) AAA
AA

A newnewnew min_min_max_
minmax

min
` +−

−
−

=
ν

ν  

In the experiments of this paper, we map the value of difference and speedup into the 
same range [0,1] by let new_minA=0 and new_maxA=1. By data transformation above, we 
could map the broken lines of the difference and speedup into the same graph i.e. Mapping 
Graph under the same scale. The intersection of the two broke lines is the tradeoff size of the 
incremental window between the difference and speedup, by which we can compute the 
proper incremental ratio of incremental windows. 

In the experiment 1 on data_1, we choose the initial window |W0|=20K, and update the 
initial sequential patterns by the incremental size of 2K, 4K, 6K, 8K, 10K, 12K, 14K, 16K, 
and 18K, i.e. the size of incremental window ∆Wi. The results of experiment 1 are illustrated 
in Figure 4. In the speedup graphs with support=0.0020 and with support=0.0025, the values 
of the speedup of IUS algorithm will decrease with the increment of size of incremental 
windows ∆Wi . In the difference graphs with support=0.0020 and with support=0.0025, the 
values of the difference will increase with the increment of the size of incremental alarm 
windows. In order to find the suitable size of incremental windows, we first map the graphs 
of speedup and difference into the same graph by the data transform above, then find the 
intersection point of the two lines. The intersection point is a tradeoff between the speedup 
and the difference, and is a suitable point to update sequential patterns. In the mapping graphs 
with support=0.0020 and support=0.0025 of Figure 4, the intersection point is about 6K, so 
the suitable range of incremental ratio of initial window is about 30 percent of initial windows 
W0.  

In the experiment 2 on data_2, we choose the initial window |W0|=20K, and update the 
initial sequential patterns by the incremental size of 2K, 4K, 6K, 8K, 10K, 12K, 14K, 16K, 
and 18K, i.e. the size of incremental window ∆Wi. The results of experiment 2 are illustrated 
in Figure 5. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 5, the 
intersection point is about between 8.5K and 9K, so the suitable range of incremental ratio of 
initial window is about 42.5 to 45 percent of initial windows W0 

In the experiment 3 on data_1, we choose the initial window |W0|=40K, and update the 
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, and 32K, 
i.e. the size of incremental window ∆Wi. The results of experiment 3 are illustrated in Figure 
6. The intersection point is a tradeoff between the speedup and the difference, and is a 
suitable point to update sequential patterns. In the mapping graphs with support=0.0020 and 
support=0.0025 of Figure 6, the intersection point is between 9K and 10K, so the suitable 
range of incremental ratio of initial window is about 22.5 to 25 percent of initial windows W0.  

In the experiment 4 on data_2, we choose the initial window |W0|=40K, and update the 
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, and 32K, 
i.e. the size of incremental window ∆Wi. The results of experiment 4 are illustrated in Figure 
7. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 7, the 
intersection point is about 6K, so the suitable range of incremental window of initial window 
is about 15 percent of initial windows W0 

In the experiment 5 on data_1, we choose the initial window |W0|=50K, and update the 
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initial patterns by incremental size of 5K, 10K, 15K, 20K, 25K, 30K, 35K 40k, and 45k, i.e. 
the size of incremental window ∆Wi. The results of experiment 5 are illustrated in Figure 8. 
In the mapping graphs with support=0.0020 and support=0.0025 of Figure 8, the intersection 
point is between 15K and 18K, so the suitable range of incremental window of initial window 
is about 30 to 36 percent of initial windows W0. 

In the experiment 6 on data_2, we choose the initial window |W0|=50K, and update the 
initial sequential patterns by the incremental size of 5K, 10K, 15K, 20K, 25K, 30K, and 35K, 
i.e. the size of incremental window ∆Wi. The results of experiment 6 are illustrated in Figure 
9. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 9, the 
intersection point is between 15K and 18K, so the range of incremental window of initial 
window is about 30 to 36 percent of initial windows W0.  

In the experiment 7 on data_1, we choose the initial window |W0|=60K, and update the 
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, 32K, and 
36K, i.e. the size of incremental window ∆Wi. The results of experiment 7 are illustrated in 
Figure 10. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 10, the 
intersection point is between 10K and 12K, so the suitable range of incremental window of 
initial window is about 16.7 to 20 percent of initial windows W0 

In the experiment 8 on data_2, we choose the initial window |W0|=60K, and update the 
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, 32K, and 
36K, i.e. the size of incremental window ∆Wi. The results of experiment 8 are illustrated in 
Figure 11. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 11, the 
intersection point is between 10K and 12K, so the suitable range of incremental ratio of initial 
window is about 16.7 to 20 percent of initial windows W0. 

In all, by the experiments above, in general, as the size of incremental windows grows, 
the values of the speedup and the values of the difference will decrease and increase 
respectively. Based on the TPD method we proposed, it is shown experimentally that the 
suitable range of incremental ratio of initial windows to update is about 20 to 30 percent of 
the size of initial windows for the IUS algorithm. 

 

6. Conclusion 

In this paper, we first proposed a metric distance as the difference measure between the 
sequential patterns. Then we present an experimental method, called TPD (Tradeoff between 
Performance and Difference), to decide when to update sequential patterns of stream data. 
The TPD method can determine a reasonable ratio of the size of incremental window to that 
of original window for incremental updating algorithms, which may depend on the concrete 
data. We also do eight experiments of IUS algorithm [20] to verify the TPD method. From the 
experiments, we can see that as the size of original windows increases, the incremental ratio 
determined by the TPD method does not monotonically increase or decrease but changes in a 
range between 20 and 30 percentage. 

So in practice, when we do incremental data mining for some kind of stream data, by 
use of the TPD method, we can do some initial experiments to determine a suitable 
incremental ratio for this kind of data and then use this ratio to decide when to update 
sequential patterns in the incremental data mining. Finally, we hope that our method could be 
extended to some other increasingly updating algorithms in future. 
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Appendix A 
 
Theorem 1. Given two sets A and B, the measure defined as follows is a distance. 

BA
BA

BAd
U

∆
=),(  if Φ≠A  or Φ≠B , otherwise 0),( =BAd . 

Proof. First, we can easily prove that the following two properties hold for the measure 
defined above. 
1. 0),( ≥BAd  and BABAd =⇔= 0),( . 
2. ),(),( ABdBAd = . 

Now we only need to prove that the triangle inequality also holds for this measure. 
Namely, given three sets A, B and C, we will prove that 

),(),(),( BAdCBdCAd ≥+ . (A.1) 
Assume that the sets A, B and C are as follows. 
 
 
 
 
 
 
 
 
 
 
 
By the figure above and the definition of the measure d, we know that proving inequality (A.1) 
is equivalent to proving the following inequality. 
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It can be easily shown that if 031 ≥≥ bb , 042 ≥≥ bb  and 041 >+bb , then 
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The proof of inequality (A.2) can be divided into the following four cases. 
Case 1: 37 aa ≤  and 17 aa ≤ . 

By the condition above, we have 
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 (A.5) 

It follows from inequalities (A.4) and (A.5) that inequality (A.2) holds. 
Case 2: 37 aa ≥  and 17 aa ≥ . 

By the condition above and inequality (A.3), we have 
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It follows from inequalities (A.6) and (A.7) that inequality (A.2) holds. 
Case 3: 173 aaa ≤≤ . 
Since 73 aa ≤ , by inequality (A.3) we have 
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Since 13 aa ≤ , we have 
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By inequalities (A.9) and (A.10), we have 
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It follows from inequalities (A.8) and (A.11) that inequality (A.2) holds. 
Case 4: 371 aaa ≤≤ . 
The proof in this case is similar to that in Case 3 and so we are done. 


