
 1

When to Update the Sequential Patterns of
 Stream Data?

Qingguo Zheng Ke Xu Shilong Ma
National Lab of Software Development Environment

Department of Computer Science and Engineer
Beijing University of Aeronautics and Astronautics, Beijing 100083

{zqg, kexu, slam}@nlsde.buaa.edu.cn

Abstract
In this paper, we first define a difference measure between the old and new sequential
patterns of stream data, which is proved to be a distance. Then we propose an experimental
method, called TPD (Tradeoff between Performance and Difference), to decide when to
update the sequential patterns of stream data by making a tradeoff between the performance
of increasingly updating algorithms and the difference of sequential patterns. The experiments
for the incremental updating algorithm IUS on two data sets show that generally, as the size
of incremental windows grows, the values of the speedup and the values of the difference will
decrease and increase respectively. It is also shown experimentally that the incremental ratio
determined by the TPD method does not monotonically increase or decrease but changes in a
range between 20 and 30 percentage for the IUS algorithm.

Keywords
Incremental mining, sequential patterns, difference measure, updating sequential patterns

1. Introduction

To enhance the performance of algorithms of data mining, many researchers [1,2,3,4,5,6,7]
have focused on increasingly updating association rules and sequential patterns. But if we
update association rules or sequential patterns too frequently, the cost of computation will
increase significantly. For the problem above, Lee and Cheung [8] studied the problem
�Maintenance of Discovered Association Rules: When to update?� and proposed an algorithm
called DELL to deal with it. The important problem of �When to update� is to find a suitable
distance measure between the old and new association rules. In [8], the symmetric difference
was used to measure the difference of association rules. But Lee and Cheung only considered
the difference of association rules, and did not consider that the performance of increasingly
updating algorithms will change with the size of added transactions. Ganti et al. [15,16]
focused on the incremental stream data mining model maintenance and change detection
under block evolution. However, they also didn�t consider the performance of incremental
data mining algorithms for the evolving data.

Obviously, with the increment of the size of incremental windows, the performance of
incremental updating algorithms will decrease. If the difference between the new and old
sequential patterns is too high, the size of incremental window will become too large,

 2

therefore the performance of incremental updating algorithm will be reduced greatly. On the
other hand, if the difference is too small, the incremental updating algorithm will update the
old sequential patterns very frequently, which will also consume too many computing
resource. In all, we must make a tradeoff between the performance of the updating algorithms
and the difference of the sequential patterns. In this paper, we use the speedup as a measure of
incremental updating algorithms and define a metric distance as the difference measure to
detect the change of the sequential patterns of stream data. Based on those measures, we
propose an experimental method, called TPD (Tradeoff between Performance and Difference),
to estimate the suitable range of the incremental ratio of stream data by making a tradeoff
between the performance of the increasingly updating algorithm and the difference of
sequential patterns.

By the TPD method, we estimate the suitable range of incremental ratio of stream data
for the incremental updating algorithm IUS [21]. The experiments on two data sets in Section
5 show that generally, as the size of incremental windows grows, the values of the speedup
and the values of the difference will decrease and increase respectively. By the experiments,
we can discover that as the size of original windows increases, the incremental ratio
determined by TPD method does not monotonically increase or decrease but changes in a
range between 18 and 30 percentage for the IUS algorithm.

The rest of this paper is organized as follows. In Section 2 we compare our work with the
related work of the incremental mining for stream data. Section 3 formally gives the notion
and definitions in this paper and defines the difference measure between the old and new
sequential patterns. In Section 4, by making a tradeoff between the performance of
increasingly updating algorithm and the difference of sequential patterns, we propose a
method, called TPD (Tradeoff between Performance and Difference), to decide when to
update sequential patterns of stream data. We experimentally verify the proposed method on
two sets of GSM alarm data in Section 5. Finally, we give the conclusion in Section 6.

2. Related work

Lee and Cheung studied the problem of �When to update association rules� to avoid the
overhead updating the rules too frequently in [8]. But they only studied updating association
rules in the transaction data, while we focus on studying when to update the sequential
patterns of stream data. They used the ratio |L∆L`|/|L as the difference measure of association
rules, but in this paper we not only define a difference measure of sequential patterns but also
prove that this measure is a distance.

In [9], Agrawal et al. proposed an indexing method for time sequences for processing
similarity queries, which uses the Discrete Fourier Transform (DFT) to map time sequences
to the frequency domain. In [10], Agrawal proposed a new model of similarity of time
sequences that captures the intuitive notion that two sequences should be considered similar if
they have enough non-overlapping time-ordered pairs of subsequences those are similar.

In [11], Datar et al. studied the problem of maintaining aggregates and statistics over data

 3

streams, proposed the sliding window model and formulated the basic counting problem
whose solution can be used as a building block for solving most of the problems.

Mannila et al. [13] used an edit distance notion for measuring the similarity of events
sequences, which is defined as the cost of the cheapest possible sequence of operations that
transforms a sequence to another. The edit distance can be computed using dynamic
programming algorithm. Later Mannila and Seppanen [14] described a simple method for
similarity search in sequences of events, which is based on the use of random projections. Das
et al. [12] also introduced the notion of an external measure between attribute A and attribute
B, defined by looking at the values of probe functions on sub-relations defined by A and B.

Ganti et al. [15] studied the incremental stream data mining model maintenance and
change detection under block evolution. They adopted the FOCUS framework [16] for
change detection, which measures the deviation between two datasets first by the class of
decision tree models and then by the class of frequent itemsets.

Domingos and Hulten [17] introduced Hoeffding trees and proposed a method for
learning online from the high-volume data streams that are increasingly common, called
VFDT (very Fast Decision Tree learner). Later Hulten et al. [18] proposed an efficient
algorithm for mining decision trees from continuously-changing data streams, based on the
ultra-fast VFDT decision tree learner, which was called CVFDT. Corters and Preginbon [19]
have discussed the statistical and computational aspects of deploying signature-based
methods in the applications of telecommunications industry.

3. Problem Definition

3.1. Stream data model

An stream tuple and its length, An stream queue and its length, An stream viewing
window and its size
1.) An stream event is defined as Ei=<ei, tn>, i, n=1,2,3,�, where ei is an stream event

type, including alarm event type, call details record type, financial market data type etc.
and tn is the time of stream event type occurring.

2.) An stream tuple is defined as Qi=((ek1, ek2, �� , ekm), ti), i,m=1,2,3,�;
k1,k2,�,km=1,2,3,� , where �ek1, ek2,��, ekm� are the stream event types which
concurrently occur at the time ti . An stream tuple can be represented by an stream event
i.e. Qi=(< ek1, ti>,< ek2, ti> ,��, <ekm, ti>)=(Ek1, Ek2, �.. , Ekm). If an stream tuple Qi
only contains one stream type, then Qi=((ek1), ti)=(< ek1, ti>)= Ek1.

3.) The length of stream tuple is |Qi|=|(ek1, ek2, ��, ekm)|=m, which is the number of the
stream event types contained in the stream tuple.

4.) An stream queue is defined as Sij=<Qi, Qi+1,�, Qj> i,j=1,2,3,�, where ti< ti+1 <�<tj .
An stream queue can be represented by an stream event i.e. Sij=<Qi, Qi+1,�,Qj>=< (Ei1,..,
Eik), (Ei+1),�, (Ej1, �, Ejm)>= < (Ei1,�, Eik), Ei+1,�, (Ej1, �, Ejm)>, i1,�,ik ,j1,�,
jm=1,2,3,� .

5.) The length of stream queue is defined as | Sij|=|<Qi, Qi+1, �, Qj>|=j-i+1, which is equal

 4

to the number of stream tuple contained in stream queue.

6.) An stream viewing window is defined as Wk=<Qm, �, Qn|d=n-m+1>, where n≥m;
k,m,n=1,2,3,� .

7.) The size of stream viewing window is defined as |Wk|=|<Qm,�, Qn|d=n-m+1>|=d ,
where k,m,n=1,2,3,� .

8.) Given an sequence seqm =< ei1, ei2,�,eim > and an stream viewing window Wk, the
times of the sequence seqm occurring in the Wk are defined as

 occur (seqm, Wk)=| the times of seqm occurring in Wk |

9.) Given an sequence seqm =< ei1, ei2,�,eim >, the support of the sequence seqm in an

stream viewing window Wk is defined as

|W|
)W,seq(occur

)W,seq(support
k

km
km =

Obviously, we have |W|)W,qsupport(se)W,occur(seq kkmkm ×=

Example 1 Figure 1 presents graphically an stream queue S18=< Q1, Q2, Q3, Q4, Q5, Q6, Q7,
Q8>. The time of stream tuple Q1 , Q2, � , Q8 is that t1< t2 , � ,< t 8 .In Figure 1, the stream
queue S18 can also be denoted by the stream event, S18=<E2, E5, E1, (E3 , E6), E7, E9, E7, E10>.
An stream viewing window is W5=< Q1, Q2 , Q3, Q4, Q5, Q6, Q7 | d=7> and the size of the
window is |W5|=7.

3.2. Sliding stream viewing windows on the stream queue

In Figure 2, Given stream view window Wi (i=0,1,2,3, �), ∆Wi (i=0,1,2,3, �) is called
incremental window, when i=0, ∆W0 is called initial window, where Wi+1=Wi+∆Wi+1
(i=0,1,2,3, �). The ratio of the size of incremental window to that of the initial window, i.e.
|∆W1|/|W0|, is called incremental ratio of stream data.

Figure 1. A stream queue

W5

 t1 t2 t3 t4 t5 t6 t7 t8
 e2 e 5 e 1 (e 3, e 6) e7 e9 e7 e10
 E2 E5 E1 (E3 ,E6) E7 E9 E7 E10
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Time

 5

3.3. Estimation of the difference between the old and new sequential patterns

Before updating the frequent sequences KWL in Wk, we must estimate the difference between
KWL and 1+KWL . If the difference is very large, then we should update the sequential patterns

as soon as possible. But if the difference is very small, then we do not need to update the
sequential patterns. In order to measure the difference between the old and new frequent
sequence sets, we can define a measure as follows

||
||),(

1

1
1

+

+
+

∆=
KK

KK
KK

WW

WW
WW

LL
LLLLd

U
, if Φ≠KWL or Φ≠+1KWL , otherwise 0),(1 =+KK WW LLd ,

where 1+∆ KK WW LL is the symmetric difference between KWL and 1+KWL .
We know that a measure is not necessarily a metric. A metric distance must satisfy the

triangle inequality which means that for three objects A, B and C in the metric space, the
distance between A and C is greater than the distance between A and B plus the distance
between B and C. This property is also useful in measuring the differences between frequent
sequences because that for three frequent sequences Lw1, Lw2 and Lw3, if both the difference
between Lw1 and Lw2 and the difference between Lw2 and Lw3 is very small, then, intuitively,
the difference between Lw1 and Lw3 should also be small. If a difference measure between
frequent sequences is a metric, then it follows from the triangle inequality that the above
property holds. For the measure defined above, we can prove that it is also a metric (please
see Appendix A).

4. The TPD (Tradeoff between Performance and Difference) method of
deciding when to update sequential patterns

Lee and Cheung [8] only considered the difference between the old and new association rules,
but that they didn�t consider the change of the performance of incremental updating
algorithms. As mentioned before, too large difference between the new and old sequential
patters will result in poor performance of incremental updating algorithms, while too small
difference will increase the computations lose significantly. Therefore, we must make a
tradeoff between the difference of frequent sequences and the performance of increasingly

Figure 2. Sliding Windows

 ∆W0 ∆W1 ∆W2 • • • • • • ∆Wk ∆Wk+1 • • • • • •

W0

W1

W2

• • •

Wk

Wk+1

Wk-1

•
•

•

Stream Queue

 6

updating algorithms and find the suitable range of the incremental ratio of stream data.
We propose an experimental method, called TPD (Tradeoff between Performance and

Difference), to find the suitable range of incremental ratio of the initial window for deciding
when to update sequential patterns of stream data. The TPD method uses the speedups as the
measurement of incremental updating algorithms and adopts the measure defined in Section
3.3 as the difference between the new and old sequential patterns of stream data. With the
increment of the size of incremental window, the speedup of the algorithm will decrease,
while the difference of the old and new sequential patterns will increase. According to two
main factors of the incremental updating algorithms, the TPD method maps the curve of the
speedup and the difference changing with the size of incremental windows into the same
graph under the same scale, and the points of intersection of the two curves are the suitable
range of the incremental ratio of the initial windows for the increasingly updating algorithm.

In this paper, by the experiments in Section 5, we study the suitable range of incremental
ratio of the initial windows for the incremental updating algorithm: IUS [21] by TPD
(Tradeoff between Performance and Difference) method. In the experiments, the speedup
ratio of the IUS algorithm is defined as speedup=the execution time of Robust_search / the
execution time of IUS, where Robust_search is an algorithm to discover sequential patterns
from stream data [20] and IUS is an increasingly updating sequential patterns algorithm based
on Robust_search algorithm [21]. We use the distance i.e. d(LWk,LWk+1) defined above as the
difference measure between the old frequent sequences LWk and the new frequent sequences
LWk+1.

The experiments of Section 5 show that generally, as the size of incremental windows
grows, the values of the speedup and the values of the difference will decrease and increase
respectively. By making data transform, called Min-max normalization [22], for the values of
the speedup and the difference, we can map the speedup and the difference with the increment
of the size of incremental windows into the same graph under the same scale, and then from
the graph we can find the intersection point of two lines, obviously, by which we can compute
the suitable range of incremental ratio of the initial window to update sequential patterns
according to the differences and speedups mentioned above.

The Robust_search Algorithm does compute the support of sequences in the stream queue
[20], especially, which can search the support of sequences from stream queue containing
noise data. But because we mainly study the problem of when to update sequential patterns,
we only consider the condition that the stream queue doesn�t contain noise data in this paper.

The following is IUS (Incrementally Updating Sequences) algorithm proposed in [21]. In
this paper, we rewrite the IUS algorithm using the stream data model. The input of the
algorithm is the window Wk, , the incremental window ∆Wk+1, and two parameters: Min_supp
and Min_nbd_supp, where Wk+1= Wk+∆Wk+1. The output of the algorithm is the frequent

sequences 1+KWL and the negative border sequences NBD(Wk+1).

 7

Algorithm 1 . IUS(Incrementally Updating Sequences)
Input: Frequent sequences set L Wk, NBD(Wk),L∆Wk+1, NBD(∆Wk+1), where Wk+1= Wk+∆Wk+1,

 Min_supp, Min_nbd_supp
Output: Frequent sequences set: L Wk+1, Negative border sequences set: NBD(Wk+1).
1. Generate L1

 Wk+1 from L1 Wk , L1
∆Wk+1, NBD(Wk),NBD(∆Wk+1);

2. m=2; L_Size=0;
3. while ((|L Wk+1 | - L_Size)>0)
4. Begin
5. L_Size=| L Wk+1 |
6. For all seqm ∈ L Wk and all subsets of seqm are frequent in Wk+1
7. {
8. If (seqm∈ L∆Wk+1) Get occur(seqm , ∆Wk+1) from L∆Wk+1 ;
9. Else If (seqm∈ NBD(∆Wk+1)) Get occur(seqm , ∆Wk+1) from NBD(∆Wk+1);
10. Else search occur(seqm , ∆Wk+1) in ∆Wk+1 ; /* compute frequent sequence in LDB*/
11. If ((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_supp• | Wk+1|))
12. Insert seqm into L Wk+1;
13. else { Prune the seqm and the sequence containing seqm from Lwk and NBD(Wk);
14. If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp• |Wk+1|))
15. Insert seqm into NBD(Wk+1);
16. }
17. }
18. For all seqm∈ L∆Wk+1 and seqm ∉ LWk and all subsets of seqm are frequent in Wk+1

Wk: The original stream view window which contains old time-related data.
∆Wk+1: The increment stream view window which contains new time-related data.
Wk+1: The updated stream view window. When stream data being increasingly updated, the

total set of data which are equal to Wk+∆Wk+1
Support(F, X): the support of the sequence F in the X stream view windows, where X ∈

{ Wk+1 ,Wk, ∆Wk+1}.
Min_supp :Minimum support threshold of the frequent sequence.
Min_nbd_supp: Minimum support threshold of negative border sequence.
CX: Candidate sequences in X stream view windows, where X ∈ { Wk+1 ,Wk, ∆Wk+1}.
LX : Frequent sequences in the X stream view windows, where X ∈ { Wk+1 ,Wk, ∆Wk+1}.
NBD(X)=CX- LX, where NBD(X) consists of the sequences in X stream view windows whose

sub_sets are frequent, its Support is lower than Min_supp and greater than

Min_nbd_supp. Note that X ∈ {Wk+1 ,Wk, ∆Wk+1}

Figure 3. The Notions in IUS Algorithm

 8

19. {
20. If(seqm∈ NBD(Wk)) Get occur(seqm , Wk) from NBD(Wk);
21. Else search occur(seqm , Wk) in Wk ;/* compute frequent sequence in L∆Wk+1 */
22. If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_supp• |Wk+1|))
23. Insert seqm into LWk+1 ;
24. else { Prune the seqm and the sequence containing seqm from L∆Wk+1 and NBD(∆Wk+1);
25. If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp• | Wk+1|))
26. Insert seqm into NBD(Wk+1);
27. }
28. }
29. For all seqm∈ NBD(Wk) and seqm ∉ L∆Wk+1 and seqm ∉ NBD(∆Wk+1)
30. and all subset of seqm are frequent
31. { Search occur(seqm , ∆Wk+1) in ∆Wk+1;
32. If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp• | Wk+1 |))
33. insert seqm into NBD(Wk+1);
34. }
35. For all seqm∈ NBD(∆Wk+1) and seqm∉ LWk and seqm∉ NBD(Wk)
36. and all subset of seqm are frequent
37. { Search occur(seqm , Wk) in Wk
38. If((occur(seqm , ∆Wk+1)+ occur(seqm , Wk))>(Min_nbd_supp• |Wk+1|))
39. insert seqm into NBD(Wk+1);
40. }
41. / * generate new negative border from L∆Wk+1 and LWk */
42. generate Negative Border NBDm(Wk+1). from LWk+1

m-1; /* Algorithm 1_1 */
43. m=m+1;
44. end. /* end of while */

5. Experiments

We conducted a set of experiments to find when to update sequential patterns for stream data.
The experiments were on the DELL PC Server with 2 CPU Pentium II, CPU MHz
397.952211, Memory 512M, SCSI Disk 16G. The Operating system on the server is Red Hat
Linux version 6.0.

The data_1 in experiments are the alarms in GSM Networks, which contain 194 alarm
types and 100k alarm events. The time of alarm events in the data_1 range from
2001-08-11-18 to 2001-08-13-17. The data_2 in experiments are the alarms in GSM
Networks, which contain 171 alarm types and 100k alarm events. The time of alarm events in
the data_2 range from 2001-08-07-09 to 2001-08-09-12.

In the experiments, we compare the execution time of the IUS algorithm with that of the
Robust_search algorithm [21] in the view window Wi. The speedup ratio is defined in Section
4. We also use the distance in Section 3.3 as the difference measure between the sequential
patterns of Wk and Wk+1.

 9

-- 2K 4K 6K 8K 10K 12K 14K 16K 18K

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36
Difference graph, support=0.0020

D
iff

er
en

ce
s

The size of incremental windows

 Difference

-- 2K 4K 6K 8K 10K 12K 14K 16K 18K
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
ps

The size of incremental windows

 Speedup

Speedup graph, support=0.0020

2K 4K 6K 8K 10K 12K 14K 16K 18K
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

D
iff

er
en

ce
s

The size of incremental windows

 Difference

Difference graph,support=0.0025

2K 4K 6K 8K 10K 12K 14K 16K 18K

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
ps

The size of incremental windows

 Speedup

Speedup graph, support=0.0025

Figure 4.Experiment 1 on Data_1 |Initial window|=20k

-- 2K 4K 6K 8K 10K 12K 14K 16K 18K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 Speedups Differences

Mapping graph, support=0.0020

2K 4K 6K 8K 10K 12K 14K 16K 18K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0
The size of incremental windows

 Speedups Differences

Mapping graph, support=0.0025

2K 4K 6K 8K 10K 12K 14K 16K 18K

0.10

0.15

0.20

0.25

0.30

D
iff

er
en

ce
s

The size of incremental windows

 Difference

Difference graph, support=0.0020

2K 4K 6K 8K 10K 12K 14K 16K 18K

1.5

2.0

2.5

3.0

3.5

4.0

Speedup graph, support=0.0020

Sp
ee

du
ps

The size of incremental windows

 Speedup

2K 4K 6K 8K 10K 12K 14K 16K 18K

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26
Difference graph, support=0.0025

D
iff

er
en

ce
s

The size of incremental windows

 Difference

2K 4K 6K 8K 10K 12K 14K 16K 18K

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sp
ee

du
ps

The size of incremental windows

 Speedup

Speedup graph, support=0.0025

Figure 5. Experiment 2 on Data_2 |Initial window|=20K

2K 4K 6K 8K 10K 12K 14K 16K 18K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 Speedups Differences

Mapping graph, support=0.0020

2K 4K 6K 8K 10K 12K 14K 16K 18K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 Speedups Differences

Mapping graph, support=0.0025

 10

Figure 7. Experiment 4 on Data_2 |Initial window|=40K

Figure 6. Experiment 3 on Data_1 |Initial window|=40K

4K 8K 12K 16K 20K 24K 28K

1.6

1.8

2.0

2.2

2.4

Speedup graph, support=0.0020

Sp
ee

du
ps

The size of incremental windows

 Speedup

4K 8K 12K 16K 20K 24K 28K

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24
Difference graph, support=0.0020

D
iff

er
en

ce
s

The size of incremental windows

 Difference

4K 8K 12K 16K 20K 24K 28K

1.8

2.0

2.2

2.4

2.6

D
iff

er
en

ce
s

The size of incremental windows

 Speedup

Speedup graph, support=0.0025

4K 8K 12K 16K 20K 24K 28K
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Difference graph, support=0.0025

D
iff

er
en

ce
s

The size of incremental windows

 Difference

4K 8K 12K 16K 20K 24K 28K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.
00

00
-1

.0
00

0

The size of incremental windows
 Speedups Differences

Mapping graph, support=0.0020

4K 8K 12K 16K 20K 24K 28K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.
00

00
-1

.0
00

0

The size of incremental windows

 Speedups Differences

Mapping graph, support=0.0025

4K 8K 12K 16K 20K 24K 28K

2

4

6

8

10

12

14

16

18

Sp
ee

du
ps

The size of incremental windows

 Speedup

Speedup graph, support=0.0020

4K 8K 12K 16K 20K 24K 28K
0.27

0.28

0.29

0.30

0.31

0.32

0.33
Difference graph, support=0.0020

D
iff

er
en

ce
s

The size of incremental windows

 Difference

4K 8K 12K 16K 20K 24K 28K
0

2

4

6

8

10

12

14

16

18

20

Sp
ee

du
ps

The size of incremental windows

 Speedup

Speedup graph, support=0.0025

4K 8K 12K 16K 20K 24K 28K

0.22

0.23

0.24

0.25

0.26

0.27

Difference graph, support=0.0025

D
iff

er
en

ce
s

The size of incremental windows

 Difference

4K 8K 12K 16K 20K 24K 28K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Mapping graph, support=0.0020

0.
00

00
-1

.0
00

0

The size of incremental windows
 Speedups Differences

4K 8K 12K 16K 20K 24K 28K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows

 Speedups Differences

Mapping graph, support=0.0025

 11

Figure 8. Experiment 5 on data_1 |Initial

-- 5K 10K 15K 20K 25K 30K 35K 40K 45K --
1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4
Speedup graph, support=0.0020

S
pe

ed
up

s

The size of incremental windows

 Speedup

-- 5K 10K 15K 20K 25K 30K 35K 40K 45K
1.5

2.0

2.5

3.0

3.5

4.0
Speedup graph, support=0.0025

sp
ee

du
ps

The size of incremental windows

 speedup

-- 5K 10K 15K 20K 25K 30K 35K 40K 45K --
0.10

0.12

0.14

0.16

0.18

0.20

Difference graph, support=0.0020

S
pe

ed
up

s

The size of incremental windows

 Difference

-- 5K 10K 15K 20K 25K 30K 35K 40K 45K

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22
Difference graph, support=0.0025

Sp
ee

du
ps

The size of incremental windows

 difference

-- 5K 10K 15K 20K 25K 30K 35K 40K 45K --

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups Differences

Mapping graph, support=0.0020

-- 5K 10K 15K 20K 25K 30K 35K 40K 45K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups differences

Mapping graph, support=0.0025

Figure 9. Experiment 6 on data_2 |Initial window|=50K

5K 10K 15K 20K 25K 30K 35K

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4
Speedup graph, support=0.0020

Sp
ee

du
ps

The size of incremental windows

 speedup

5K 10K 15K 20K 25K 30K 35K

0.24

0.26

0.28

0.30

0.32

0.34
Difference graph, support=0.0020

D
iff

er
en

ce
s

The size of incremental windows

 difference

5K 10K 15K 20K 25K 30K 35K

1.5

2.0

2.5

3.0

3.5

4.0

Speedup graph, support=0.0025

Sp
ee

du
ps

The size of incremental windows

 speedup

5K 10K 15K 20K 25K 30K 35K
0.20

0.22

0.24

0.26

0.28

0.30

0.32
Difference graph, support=0.0025

D
iff

er
en

ce
s

The size of incremental windows

 difference

5K 10K 15K 20K 25K 30K 35K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups differences

Mapping graph, support=0.0020

5K 10K 15K 20K 25K 30K 35K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups differences

Mapping graph, support=0.0025

 12

Figure 10. Experiment 7 on Data_1 |Initial window|=60K

-- 4K 8K 12K 16K 20K 24K 28K 32K 36K
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Speedup graph, support=0.0020

Sp
ee

du
ps

The size of incremental windows

 speedup

-- 4K 8K 12K 16K 20K 24K 28K 32K 36K

0.08

0.10

0.12

0.14

0.16

0.18

D
iff

er
en

ce
s

The size of incremental windows

 difference

Difference graph, support=0.0020

-- 4K 8K 12K 16K 20K 24K 28K 32K 36K

2.0

2.5

3.0

3.5

4.0

4.5

Speedup graph, support=0.0025
Sp

ee
du

ps

The size of incremental windows

 speedup

-- 4K 8K 12K 16K 20K 24K 28K 32K 36K

0.06

0.08

0.10

0.12

0.14

0.16

0.18

D
iff

er
en

ce
s

The size of incremental windows

 difference

Difference graph, support=0.0025

-- 4K 8K 12K 16K 20K 24K 28K 32K 36K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups differences

Mapping graph, support=0.0020

-- 4K 8K 12K 16K 20K 24K 28K 32K 36K

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups differences

Mapping graph, support=0.0025

Figure 11. Experiment 8 on Data_2 |Initial window|=60K

4K 8K 12K 16K 20K 24K 28K

2.2

2.4

2.6

2.8

3.0

3.2

3.4
Speedup graph, support=0.0020

Sp
ee

du
ps

The size of incremental windows

 speedup

4K 8K 12K 16K 20K 24K 28K

0.20

0.22

0.24

0.26

0.28

0.30

D
iff

er
en

ce
s

The size of incremental windows

 difference

Difference graph, support=0.0020

4K 8K 12K 16K 20K 24K 28K
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Sp
ee

du
ps

The size of incremental windows

 speedup

Speedup graph, support=0.0025

4K 8K 12K 16K 20K 24K 28K
0.16

0.18

0.20

0.22

0.24

0.26

D
iff

er
en

ce
s

The size of incremental windows

 difference

Difference graph, support=0.0025

4K 8K 12K 16K 20K 24K 28K

0.0

0.2

0.4

0.6

0.8

1.0

Mapping graph, support=0.0020

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups differences

4K 8K 12K 16K 20K 24K 28K

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

00
-1

.0
00

0

The size of incremental windows
 speedups differences

Mapping graph, support=0.0025

 13

The Speedup graph in Figure 4, 5, �, 11 is the speedup of IUS Algorithm [20] to the
Robust_search Algorithm [21] with the size of incremental windows. The Difference graph in
Figure 4, 5 , �, 11 is the difference measure of frequent sequences between the initial
window and the incremental windows with the size of incremental windows. Mapping the
Speed and difference graphs into the same scale graph forms Mapping graph in Figure 4,
5, � , 11.

In order to make the speed graph and difference graph have the same scale, we adopt the
data normalization methods called Min-max normalization [22], which performs linear
transformation of the origin data. Suppose that minA and maxA are the minimum and
maximum values of an attribute A. Min-max normalization maps a value ν of A to ν` in the
range [new_minA, new_maxA] by computing

() AAA
AA

A newnewnew min_min_max_
minmax

min
` +−

−
−

=
ν

ν

In the experiments of this paper, we map the value of difference and speedup into the
same range [0,1] by let new_minA=0 and new_maxA=1. By data transformation above, we
could map the broken lines of the difference and speedup into the same graph i.e. Mapping
Graph under the same scale. The intersection of the two broke lines is the tradeoff size of the
incremental window between the difference and speedup, by which we can compute the
proper incremental ratio of incremental windows.

In the experiment 1 on data_1, we choose the initial window |W0|=20K, and update the
initial sequential patterns by the incremental size of 2K, 4K, 6K, 8K, 10K, 12K, 14K, 16K,
and 18K, i.e. the size of incremental window ∆Wi. The results of experiment 1 are illustrated
in Figure 4. In the speedup graphs with support=0.0020 and with support=0.0025, the values
of the speedup of IUS algorithm will decrease with the increment of size of incremental
windows ∆Wi . In the difference graphs with support=0.0020 and with support=0.0025, the
values of the difference will increase with the increment of the size of incremental alarm
windows. In order to find the suitable size of incremental windows, we first map the graphs
of speedup and difference into the same graph by the data transform above, then find the
intersection point of the two lines. The intersection point is a tradeoff between the speedup
and the difference, and is a suitable point to update sequential patterns. In the mapping graphs
with support=0.0020 and support=0.0025 of Figure 4, the intersection point is about 6K, so
the suitable range of incremental ratio of initial window is about 30 percent of initial windows
W0.

In the experiment 2 on data_2, we choose the initial window |W0|=20K, and update the
initial sequential patterns by the incremental size of 2K, 4K, 6K, 8K, 10K, 12K, 14K, 16K,
and 18K, i.e. the size of incremental window ∆Wi. The results of experiment 2 are illustrated
in Figure 5. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 5, the
intersection point is about between 8.5K and 9K, so the suitable range of incremental ratio of
initial window is about 42.5 to 45 percent of initial windows W0

In the experiment 3 on data_1, we choose the initial window |W0|=40K, and update the
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, and 32K,
i.e. the size of incremental window ∆Wi. The results of experiment 3 are illustrated in Figure
6. The intersection point is a tradeoff between the speedup and the difference, and is a
suitable point to update sequential patterns. In the mapping graphs with support=0.0020 and
support=0.0025 of Figure 6, the intersection point is between 9K and 10K, so the suitable
range of incremental ratio of initial window is about 22.5 to 25 percent of initial windows W0.

In the experiment 4 on data_2, we choose the initial window |W0|=40K, and update the
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, and 32K,
i.e. the size of incremental window ∆Wi. The results of experiment 4 are illustrated in Figure
7. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 7, the
intersection point is about 6K, so the suitable range of incremental window of initial window
is about 15 percent of initial windows W0

In the experiment 5 on data_1, we choose the initial window |W0|=50K, and update the

 14

initial patterns by incremental size of 5K, 10K, 15K, 20K, 25K, 30K, 35K 40k, and 45k, i.e.
the size of incremental window ∆Wi. The results of experiment 5 are illustrated in Figure 8.
In the mapping graphs with support=0.0020 and support=0.0025 of Figure 8, the intersection
point is between 15K and 18K, so the suitable range of incremental window of initial window
is about 30 to 36 percent of initial windows W0.

In the experiment 6 on data_2, we choose the initial window |W0|=50K, and update the
initial sequential patterns by the incremental size of 5K, 10K, 15K, 20K, 25K, 30K, and 35K,
i.e. the size of incremental window ∆Wi. The results of experiment 6 are illustrated in Figure
9. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 9, the
intersection point is between 15K and 18K, so the range of incremental window of initial
window is about 30 to 36 percent of initial windows W0.

In the experiment 7 on data_1, we choose the initial window |W0|=60K, and update the
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, 32K, and
36K, i.e. the size of incremental window ∆Wi. The results of experiment 7 are illustrated in
Figure 10. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 10, the
intersection point is between 10K and 12K, so the suitable range of incremental window of
initial window is about 16.7 to 20 percent of initial windows W0

In the experiment 8 on data_2, we choose the initial window |W0|=60K, and update the
initial sequential patterns by the incremental size of 4K, 8K, 16K, 20K, 24K, 28K, 32K, and
36K, i.e. the size of incremental window ∆Wi. The results of experiment 8 are illustrated in
Figure 11. In the mapping graphs with support=0.0020 and support=0.0025 of Figure 11, the
intersection point is between 10K and 12K, so the suitable range of incremental ratio of initial
window is about 16.7 to 20 percent of initial windows W0.

In all, by the experiments above, in general, as the size of incremental windows grows,
the values of the speedup and the values of the difference will decrease and increase
respectively. Based on the TPD method we proposed, it is shown experimentally that the
suitable range of incremental ratio of initial windows to update is about 20 to 30 percent of
the size of initial windows for the IUS algorithm.

6. Conclusion

In this paper, we first proposed a metric distance as the difference measure between the
sequential patterns. Then we present an experimental method, called TPD (Tradeoff between
Performance and Difference), to decide when to update sequential patterns of stream data.
The TPD method can determine a reasonable ratio of the size of incremental window to that
of original window for incremental updating algorithms, which may depend on the concrete
data. We also do eight experiments of IUS algorithm [20] to verify the TPD method. From the
experiments, we can see that as the size of original windows increases, the incremental ratio
determined by the TPD method does not monotonically increase or decrease but changes in a
range between 20 and 30 percentage.

So in practice, when we do incremental data mining for some kind of stream data, by
use of the TPD method, we can do some initial experiments to determine a suitable
incremental ratio for this kind of data and then use this ratio to decide when to update
sequential patterns in the incremental data mining. Finally, we hope that our method could be
extended to some other increasingly updating algorithms in future.

ACKNOWLEDGEMENTS

 15

Thanks Professor Jiawei Han�s Summer Course in Beijing 2002, help us to find the proper
data transform methods. Thanks Professor Wei Li for the choice of subject and guidance of
methodology. Thanks for the suggestions from Professor YueFei Sui of Chinese Academy
Sciences. The author would like to thank other members of National Lab of Software
Development Environment. This research was supported by National 973 Project of China
Grant No.G1999032701 and No.G1999032709.

Reference

[1] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, �Maintenance of discovered association

rules in large databases: An incremental update technique,� In Proceedings of 12th Intl.
Conf. on Data Engineering (ICDE�96), pages 106-114, New Orleans, Louisiana, USA,
February 1996.

[2] D. W. Cheung, S. D. Lee, and B. Kao, �A General Incremental Technique for
Maintaining Discovered Association Rules,� In Proceedings of the 5th Intl. Conf. on
Database Systems for Advanced Applications (DASFAA�97), pages 185-194, Melbourne,
Australia, April 1997.

[3] F. Masseglia, P. Poncelet and M.Teisseire, �Incremental Mining of Sequential Patterns in
Large Databases (PS),� Actes des 16ièmes Journées Bases de Données Avancées
(BDA'00), Blois, France, October 2000.

[4] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas, �Incremental and Interactive
Sequence Mining,� In Proceedings of the 8th International Conference on Information
and Knowledge Management (CIKM�99), pages 251-258, Kansas City, MO, USA,
November 1999.

[5] Necip Fazil Ayan, Abdullah Uz Tansel, and Erol Arkun, �An efficient algorithm to update
large itemsets with early pruning,� Proceedings of the fifth ACM SIGKDD international
conference on Knowledge Discovery and Data Mining (KDD�99), August 15-18, 1999,
San Diego, CA USA pp.287-291.

[6] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, �An efficient algorithm for the
incremental updating of association rules in large database,� In Proceedings of the 3rd Intl.
Conf. On Knowledge Discovery and Data Mining (KDD�97), pages263-266, Newport
Beach, California, USA, August 1997.

[7] Ahmed Ayad, Nagwa El-Makky and Yousry Taha, �Incremental Mining of Constrained
Association Rules,� First SIAM International Conference on DATA MINING, April 5-7,
2001, Chicago USA

[8] S.D. Lee and D.W. Cheung, �Maintenance of Discovered Association Rules: When to
update?,� Proc. 1997 ACM-SIGMOD Workshop on Data Mining and Knowledge
Discovery (DMKD'97) in cooperation with ACM-SIGMOD'97,Tucson, Arizona, May 11,
1997.

[9] R. Agrawal, C. Faloutsos and A. Swami. "Efficient Similarity Search in Sequence
Databases". Proc. of the 4th Int'l Conference on Foundations of Data Organization and
Algorithms, Chicago, pages 69-84, Oct. 1993.

[10] R. Agrawal, K. Lin, H. S. Sawhney and K. Shim, �Fast Similarity Search in the Presence
of Noise, Scaling, and Translation in Time-Series Databases,� Proc. of the 21st Int'l
Conference on Very Large Databases, Zurich, Switzerland, September 1995.

[11] M. Datar, A. Gionis, P. Indyk, and R. Motwani, �Maintaining Stream Statistics over
Sliding Windows,� In Proc. of the Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA 2002), January 2002.

 16

[12] G. Das, H. Mannila, P. Ronkainen: Similarity of Attributes by External Probes. In
Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining (KDD'98), 27th - 31st August, 1998, New York, USA, p. 23-29.

[13] H. Mannila and P. Moen, �Similarity between Event Types in Sequences,� Data
Warehousing and Knowledge Discovery (DaWaK 1999), M.K. Mohania and A. M. Tjoa
(eds), p. 271-280.

[14] H. Mannila and J. K. Seppanen, �Finding similar situations in sequences of events vi a
random projections,� First SIAM International Conference on DATA MINING, April 5-7,
2001, Chicago USA.

[15] V. Ganti, J. Gehrke, R. Ramakrishnan, and W.-Y. Loh, �A frame work for measuring
changes in data characteristics,� In Proceedings of the 18th Symposium on Principles of
Database Systems, 1999.

[16] V. Ganti, J. Gehrke and R. Ramakrishnan, "Mining Data Streams under Block
Evolution," SIGKDD Explorations, Volume 3, Issue 2, pp.1-11, January, 2002.

[17] P. Domingos and G. Hulten, "Mining High-Speed Data Streams," KDD-2000. Boston,
MA: ACM Press.

[18] G. Hulten, L. Spencer and P. Domingos, "Mining Time-Changing Data Streams,"
KDD-2001, pp. 97-106

[19] C. Cortes and D. Pregibon, "Signature-Based Methods for Data Streams," Data Mining
and Knowledge Discovery 5 (3):167-182, July 2001

[20] Q. Zheng, K. Xu, W. Lv, S. Ma, �Intelligent Search of Correlated Alarms from Database
Containing Noise Data,� Proceedings of the 8th International IFIP/IEEE Network
Operations and Management Symposium (NOMS 2002), Florence, Italy, April, 2002, .
available at http://arXiv.org/abs/cs.NI/0109042

[21] Q. Zheng, K. Xu, W. Lv, S. Ma, �The Algorithms of Updating Sequential Patterns� The
Second SIAM (Society for Industrial and Applied Mathematics) Data mining�2002:
workshop HPDM (High Performance Data Mining, Washington, USA, April 2002
available at http://arXiv.org/abs/cs.DB/0203027

[22] J. Han and M. Kambr, �DATA MINING Concepts and Techniques�, p.115, Morgan
Kaufmann Publisher, 2000

 17

Appendix A

Theorem 1. Given two sets A and B, the measure defined as follows is a distance.

BA
BA

BAd
U

∆
=),(if Φ≠A or Φ≠B , otherwise 0),(=BAd .

Proof. First, we can easily prove that the following two properties hold for the measure
defined above.
1. 0),(≥BAd and BABAd =⇔= 0),(.
2.),(),(ABdBAd = .

Now we only need to prove that the triangle inequality also holds for this measure.
Namely, given three sets A, B and C, we will prove that

),(),(),(BAdCBdCAd ≥+ . (A.1)
Assume that the sets A, B and C are as follows.

By the figure above and the definition of the measure d, we know that proving inequality (A.1)
is equivalent to proving the following inequality.

765432

7432

765421

7621

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

+
+++++

+++

654321

6431

aaaaaa
aaaa

+++++
+++

≥ . (A.2)

It can be easily shown that if 031 ≥≥ bb , 042 ≥≥ bb and 041 >+bb , then

41

43

21

23

bb
bb

bb
bb

+
+

≥
+
+

. (A.3)

The proof of inequality (A.2) can be divided into the following four cases.
Case 1: 37 aa ≤ and 17 aa ≤ .

By the condition above, we have

365421

7621

765421

7621

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.4)

1a
2a 3a

4a
5a

6a

7a

A B

C

 18

165432

7432

765432

7432

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.5)

It follows from inequalities (A.4) and (A.5) that inequality (A.2) holds.
Case 2: 37 aa ≥ and 17 aa ≥ .

By the condition above and inequality (A.3), we have

365421

3621

765421

7621

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.6)

165432

1432

765432

7432

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.7)

It follows from inequalities (A.6) and (A.7) that inequality (A.2) holds.
Case 3: 173 aaa ≤≤ .
Since 73 aa ≤ , by inequality (A.3) we have

365421

3621

765421

7621

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.8)

365432

3432

765432

7432

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.9)

Since 13 aa ≤ , we have

165432

3432

365432

3432

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.10)

By inequalities (A.9) and (A.10), we have

165432

3432

765432

7432

aaaaaa
aaaa

aaaaaa
aaaa

+++++
+++

≥
+++++

+++
 (A.11)

It follows from inequalities (A.8) and (A.11) that inequality (A.2) holds.
Case 4: 371 aaa ≤≤ .
The proof in this case is similar to that in Case 3 and so we are done.

