
An Efficient Algorithm for Mining Frequent Sequences by a New Strategy without

Support Counting

Ding-Ying Chiu Yi-Hung Wu Arbee L.P. Chen
*

Department of Computer Science

National Tsing Hua University

Hsinchu, Taiwan 300, R.O.C.

dr908312@cs.nthu.edu.tw yihwu@mx.nthu.edu.tw alpchen@cs.nthu.edu.tw

Abstract

Mining sequential patterns in large databases is an
important research topic. The main challenge of mining

sequential patterns is the high processing cost due to the

large amount of data. In this paper, we propose a new
strategy called DIrect Sequence Comparison (abbreviated

as DISC), which can find frequent sequences without having

to compute the support counts of non-frequent sequences.
The main difference between the DISC strategy and the

previous works is the way to prune non-frequent sequences.

The previous works are based on the anti-monotone
property, which prune the non-frequent sequences

according to the frequent sequences with shorter lengths.

On the contrary, the DISC strategy prunes the non-frequent
sequences according to the other sequences with the same

length. Moreover, we summarize three strategies used in the
previous works and design an efficient algorithm called

DISC-all to take advantages of all the four strategies. The

experimental results show that the DISC-all algorithm
outperforms the PrefixSpan algorithm on mining frequent

sequences in large databases. In addition, we analyze these

strategies to design the dynamic version of our algorithm,
which achieves a much better performance.

1. Introduction

Mining sequential patterns from a large database is

important and interesting to the fundamental research in the

data mining community [1][6][8][11][12]. It is also useful

for a variety of applications such as marketing data analysis

and stock trend prediction. There are three major topics in

this research field. One is to develop efficient algorithms for

mining sequential patterns [9][13][18]. Another is to add

restrictions on the sequential patterns to be mined, such as

the ones in a noisy environment [17] and the ones that

satisfy some constraints [5][10]. The other is to apply the

techniques of mining sequential patterns to special data

types, such as the Web [16], music [7], and biological data

[3][15].

*Contact author

Based on the problem definition in [1], a large

transaction database has three fields, i.e. customer id,

transaction-time, and the items purchased. An itemset is a

non-empty set of items and a sequence is an ordered list of

itemsets. In this way, each transaction corresponds to an

itemset. Each customer with a unique customer id may have

more than one transaction with different transaction-times.

All the transactions from a customer are ordered by

increasing transaction-times to form a sequence, called the

customer sequence [1].

Following the definitions in [1], the length of a sequence

is the total number of item occurrences in it. A k-sequence

stands for a sequence with length k. Let SA and SB

respectively denote two sequences <A1A2…An> and <B1

B2…Bm>, where Ai’s and Bj’s are itemsets and m n. If

there exist integers i1<i2< … <in such that A1 Bi1
, A2 Bi2

,

…, and An Bin
, it is said that SB contains SA and SA is a

subsequence of SB. Furthermore, if a customer sequence

contains a sequence SA, we call that the customer sequence

supports SA. The support count of a sequence is the number

of customer sequences that support it. If the support count of

a sequence is larger than a user-specified minimum support
count, we call it a frequent sequence. Given a database of

customer sequences, the goal of this paper is to efficiently

find all the frequent sequences.

1.1. Related works

The main challenge toward the problem of mining

sequential patterns is the high processing cost due to a large

amount of data. Many algorithms have been proposed to

speed up the mining process. The representative ones are

GSP [13], SPADE [18], SPAM [2], and PrefixSpan [9].

Srikant and Agrawal [13] adopt a bottom-up approach in the

GSP algorithm, which generates frequent 1-sequences first,

then frequent 2-sequences, and so on. This approach

generates candidate k-sequences from frequent

(k-1)-sequences in iteration based on the anti-monotone

property that all the subsequences of a frequent sequence

must be frequent. In any iteration, the candidate

k-sequences are determined to be frequent based on their

support counts. The GSP algorithm costs a lot to decompose

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

2

the customer sequences for the computation of support

counts.

Another obvious problem of the GSP algorithm is the

large number of candidate sequences. To solve this

problem, Zaki [18] introduces the lattice concept in the

SPADE algorithm to divide the candidate sequences into

groups by items such that each group can be completely

stored in the main memory. In addition, this algorithm uses

the ID-List technique to reduce the costs for computing

support counts. An ID-list of a sequence keeps a list of pairs,

which indicate the positions that it appears in the database.

In a pair, the first value stands for a customer sequence and

the second refers to a transaction in it, which contains the

last itemset of the sequence. For the example database in

Table 1, the ID-list of sequence <(a, g)(b)> is <(1,2), (1,6),

(4,3), (4,4)>, where the pair (1,2) means that this sequence

appears in the first customer sequence and ends in the

second transaction. Note that a sequence may appear more

than once in the same customer sequence, and therefore

more than one pair will be recorded.

Table 1: The example database
CID Customer Sequences

1 (a, e, g)(b)(h)(f)(c)(b, f)

2 (b)(d, f)(e)

3 (b, f, g)

4 (f)(a, g)(b, f, h)(b, f)

The SPADE algorithm also adopts a bottom-up approach

to generate frequent sequences with different lengths. By

iteration, this approach computes the support count of a

candidate k-sequence generated by merging the ID-lists of

any two frequent (k-1)-sequences with the same

(k-2)-prefix. Consider the same database in Table 1. To

compute the support count of sequence <(a, g)(h)(f)>, the

SPADE algorithm merges the two ID-lists of sequences <(a,

g)(h)> and <(a, g)(f)>, which are <(1,3), (4,3)> and <(1,4),

(1,6), (4,3), (4,4)> respectively. As a result, the ID-list of

sequence <(a, g)(h)(f)> is <(1, 4), (1, 6), (4, 4)>, indicating

that this sequence appears in the first and the fourth

customer sequences and therefore has a support count of 2.

The SPADE algorithm costs a lot to repeatedly merge the

ID-lists of frequent sequences for a large number of

candidate sequences. To reduce this cost of merging, Ayres

et al. [2] adopt the lattice concept in the SPAM algorithm

but represent each ID-list as a vertical bitmap. The SPAM

algorithm is efficient under the assumption that all the

bitmaps can be completely stored in the main memory.

On the other hand, Pei et al. [9] employ the projection

scheme in the PrefixSpan algorithm to project the customer

sequences into overlapping groups called projected
databases such that all the customer sequences in each

group have the same prefix which corresponds to a frequent

sequence. For the example database in Table 1, assuming

that the minimum support count is two, the PrefixSpan

algorithm first scans the database to find the frequent

1-sequences, i.e. <(a)>, <(b)>, <(e)>, <(f)>, <(g)>, and

<(h)>. After that, this algorithm generates the projected

database for each frequent 1-sequence. For instance, Table 2

shows the projected database of <(a)>. For this projected

database, the PrefixSpan algorithm continues the discovery

of frequent 1-sequences to form the frequent 2-sequences

with prefix <(a)>. In this way, the PrefixSpan algorithm

recursively generates the projected database for each

frequent k-sequence to find frequent (k+1)-sequences.

Obviously, the PrefixSpan algorithm costs a lot to

recursively generate a large number of projected databases.

Table 2: The projected database of <a>
CID Customer Sequences

1 (_, e, g)(b)(h)(f)(c)(b, f)

4 (_, g)(b, f, h)(b, f)

We summarize the three strategies that are used in the

related works as follows.

1. Candidate sequence pruning: This strategy prunes

away the candidate sequences that cannot be frequent as

early as possible. All the GSP, SPADE, SPAM, and

PrefixSpan algorithms adopt this strategy based on the

anti-monotone property. This strategy contributes to the

reduction of processing costs and storage overheads for

support counting.

2. Database partitioning: This strategy partitions the

database into groups such that each group can fit into

the main memory. The PrefixSpan algorithm adopts

this strategy by projecting the database according to the

prefixes of customer sequences, while the SPADE and

SPAM algorithms implicitly partition the database

based on the candidate sequences. This strategy

eliminates the unnecessary decompositions of customer

sequences while adding the extra costs for partitioning

the database.

3. Customer sequence reducing: This strategy reduces

the customer sequences as much as possible. The

PrefixSpan algorithm adopts this strategy in its

projection scheme. For example, the fourth customer

sequence <(f)(a, g)(b, f, h)(b, f)> in Table 1 is reduced

to <(_, g)(b, f, h)(b, f)> in Table 2. This strategy

contributes to the reduction of processing costs for

decomposing the customer sequences.

1.2. Overview of our approach

As opposed to the above strategies, in this paper, we

propose the fourth strategy, named DIrect Sequence

Comparison (abbreviated as DISC) to reduce the costs for

support counting and the decomposition of customer

sequences. The goal of this strategy is to recognize the

frequent sequences for a specific length k without having to

compute the support counts of the non-frequent sequences.

Furthermore, we propose an algorithm called DISC-all that

combines all the four strategies to efficiently find frequent

sequences in large databases.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

3

In our approach, we define the order of two sequences

having the same length. Given two sequences, we examine

their items from left to right and compare the leftmost

distinct items by the alphabetical order. For example,

<(a)(b)(h)> is smaller than <(a)(c)(f)> because in the 2nd

transactions, b is smaller than c. It cannot distinguish the

cases where the items contained in both sequences are the

same while their distributions in the sequences are different,

e.g., <(a, b)(c)> and <(a)(b, c)>. Therefore, before finding

the leftmost distinct items, we examine the common

prefixes of two sequences from left to right and identify the

leftmost items located in different transactions. A sequence

is smaller if its leftmost item found is located in an earlier

transaction, e.g., <(a, b)(c)> is smaller than <(a)(b, c)>.

The DISC strategy then iteratively checks whether a

k-sequence is frequent from the minimum k-sequence. For

this reason, we find the k-minimum subsequence in each

customer sequence and sort customer sequences by the

order of their associated k-minimum subsequence. After

customer sequences are sorted, we get a k-sorted database.

For example, Table 3 is the 3-sorted database of Table 1. In

a k-sorted database, we focus on two positions, i.e., the first

position and the -th position where is the minimum

support count. The k-minimum subsequence at the first

position is denoted by 1 and the k-minimum subsequence

at the -th position is denoted by .

The main idea of the DISC strategy is to compare 1 with

, to decide whether 1 is a frequent k-sequence or not. If

1 is equal to , then all the k-minimum sequences in the

k-sorted database between 1 and must all be equal to 1.

Therefore, 1 must be frequent. In this case, the next

potential frequent k-sequence must be greater than by the

order we defined. Therefore, for each customer sequence

whose associated k-minimum subsequence is equal to 1,

we find the minimum k-sequence greater than (called the

conditional k-minimum sequence) and update the position of

each customer sequences in the k-sorted database. The

DISC strategy then repeats its process to find the next

frequent k-sequence. If 1 is not equal to , there is not

enough customer sequence to support 1, and therefore 1 is

not frequent. In this case, the next potential frequent

k-sequence must be greater than or equal to . Therefore,

for each customer sequence whose associated k-minimum

subsequence is smaller than , we find the conditional

k-minimum sequence which is greater than or equal to

and update the position of each customer sequences in the

k-sorted database. The DISC strategy then repeats its

process to find the next frequent k-sequence.

The DISC strategy uses a k-sorted database to find all the

frequent k-sequences and skips most non-frequent

k-sequences by checking only the conditional k-minimum

subsequences. In this way, all the frequent k-sequences can

be found without computing the support counts of

non-frequent ones.

Table 3: The 3-sorted database of Table 1
CID 3-minimum Subsequences Customer Sequences

1 (a)(b)(b) (a, e, g)(b)(h)(f)(c)(b, f)

4 (a)(b)(b) (f)(a, g)(b, f, h)(b, f)

2 (b)(d)(e) (b)(d, f)(e)

3 (b, f, g) (b, f, g)

In the following, two examples are used to show the main

advantages of the DISC strategy.

Example 1.1. From Table 3, it can be seen that the customer

sequences with the same k-minimum subsequences are

located in the continuous positions of the k-sorted database.

Moreover, the minimum of all the k-minimum

subsequences must be located in the first N positions if its

support count is exactly N. For instance, the sequence

<(a)(b)(b)> is the minimum and its support count is equal to

2. Therefore, we can determine whether 1 is frequent by

simply comparing 1 and .

Example 1.2. Considering Table 3, if is 3, <(a)(b)(b)>

(1) is not frequent. From this, we also know that the

3-sequences smaller than <(b)(d)(e)> (), e.g. <(a)(b)(c)>

and <(a)(b, f)> cannot be frequent. Therefore, for CID 1 and

4, we generate its conditional 3-minimum sequences, which

should be larger than or equal to <(b)(d)(e)>. As a result, we

have another 3-sorted database with new 1 and as shown

in Table 4. In this way, all the non-frequent 3-sequences

smaller than <(b)(d)(e)> are skipped.

Table 4: Table 3 after re-sorting CID 1 and 4
CID 3-minimum Subsequences Customer Sequences

2 (b)(d)(e) (b)(d, f)(e)

4 (b, f)(b) (f)(a, g)(b, f, h)(b, f)

3 (b, f, g) (b, f, g)

1 (b)(f)(b) (a, e, g)(b)(h)(f)(c)(b, f)

As a result, the DISC strategy has the following

advantages:

1. Only the support counts of frequent sequences are

required to be computed. That is, no candidate sequence

is generated.

2. As many of the non-frequent sequences are skipped, the

costs for decomposing customer sequences are implicitly

reduced.

3. The frequent k-sequences can be directly discovered

without following the bottom-up approach.

In this paper, we propose an algorithm called DISC-all

that combines all the four strategies to efficiently find

frequent sequences in large databases. Compared with the

previous work, our algorithm has the same advantages that

come from the three strategies and more from the DISC

strategy. The existing algorithms and their strategies are

summarized in Table 5.

The rest of this paper is organized as follows. The basic

definitions and lemmas used for the DISC strategy are

presented in Section 2. After that, we describe the details of

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

4

the DISC-all algorithm in Section 3. In Section 4, the

performance of the DISC-all algorithm is evaluated via a

series of experiments and the efficiency issue is further

discussed according to the observations on the experiment

results. Finally, we make conclusions on this work with

future works in Section 5.

Table 5: The existing algorithms and strategies
Algorithm

Strategy

Candidate

Sequence

Pruning

Database

Partitioning

Customer

Sequence

Reducing

DISC

GSP

SPADE

SPAM

PrefixSpan

DISC-all

2. Basic definitions and lemmas

As described above, for sorting the customer sequences,

we have to provide a way to compare two sequences. Given

two sequences, we first renumber the transactions in each

sequence from left to right and associate each item with the

corresponding number (called the transaction number). For

instance, in <(a)(b)(c, d)(e)>, the transaction number of the

five items are 1, 2, 3, 3, and 4, respectively. In this way, a

sequence can be represented in the form of <A1A2…An>

where each Ai is associated with two values, i.e. an item and

a transaction number (denoted as Ai.item and Ai.no). Based

on the alphabetic order, we define a specific position at two

sequences that can distinguish them as follows:

Definition 2.1 Differential point

Given two sequences A=<A1A2…An> and B=<B1B2…Bm>,

the j-th position in both sequences is the differential point if

both the following conditions hold:

(a) i<j, (Ai.item=Bi.item) and (Ai.no=Bi.no)

(b) (Aj.item Bj.item) and (Aj.no Bj.no)
Condition (a) stands for the common prefixes of the two

sequences, while condition (b) refers to the first position in

both sequences that are different. Without loss of generality,

when a sequence is the prefix of another sequence, we can

add a special item that is smaller than any other item to the

end of the shorter sequence as the differential point. In this

way, given two sequences, at most one differential point can

be found to determine their order as follows:

Definition 2.2 Comparative order

Given two sequences A=<A1A2…An> and B=<B1B2…Bm>,

A=B if no differential point can be found. Otherwise, let the

differential point be j and A<B if one of the following

conditions holds:

(a) Aj.item<Bj.item

(b) (Aj.item=Bj.item) and (Aj.no<Bj.no)
Finally, A>B if both the above conditions do not hold.

Example 2.1. Given two sequences A=<(a, c, d)(d, b)> and

B=<(a, d, e)(a)>, the differential point is the second position

because A2.item is smaller than B2.item. Given another

sequence C=<(a, c)(d, a)>, the differential point of A and C

is the third position because A3.no is smaller than B3.no. By

Definition 2.2(a), we have A<B. Moreover, we have A<C

according to Definition 2.2(b).

Based on the comparative order, we define the

k-minimum subsequence of a customer sequence and the

k-minimum order that determine the order of sequences

based on their k-minimum subsequences as follows:

Definition 2.3 K-minimum subsequence

A sequence k is the k-minimum subsequence of a sequence

A if both the following conditions hold:

(a) k is a k-sequence and a subsequence of A

(b) k-sequence , which is a subsequence of A, k

Definition 2.4 K-minimum order

Let the signs =k, <k, and >k be the comparative operators for

the denotation of k-minimum order. Given two sequences A

and B whose k-minimum subsequences are k and k

respectively, we define the k-minimum order of A and B as

follows:

(a) A=kB if k= k

(b) A<kB if k< k

(c) A>kB if k> k

Example 2.2. Considering sequence A in Example 2.1, by

Definition 2.3, we have 1-minimum sequence <(a)>,

2-minimum sequence <(a)(b)>, 3-minimum sequence <(a,

c)(b)>, 4-minimum sequence <(a, c, d)(b)>, and 5-minimum

sequence <(a, c, d)(d, b)>. Moreover, the 3-minimum

sequences of B and C are <(a, d)(a)> and <(a, c)(a)>,

respectively. By Definition 2.4, we have the 3-minimum

order C<3A<3B and the 2-minimum order C=2B<2A.

As Section 1.2 depicts, the customer sequences can be

sorted into the k-sorted database by the k-minimum order.

The k-minimum subsequence at the first position of the

k-sorted database is called the candidate k-sequence and

denoted by 1. Given a minimum support count , the

k-minimum subsequence at the -th position of the k-sorted

database is called the candidate k-sequence and denoted by

. As a result, we have the following lemmas to show the

correctness of the DISC strategy.

Lemma 2.1 Frequent k-sequences

1 is frequent if 1= .

Proof: Because the database is sorted according to the

k-minimum subsequences, 1 must repeatedly appear at the

first positions when 1 equals . In other words, the first

 customer sequences in the k-sorted database take 1 as

their k-minimum subsequences. In this case, the support of

1 must be at least and therefore 1 is frequent.

Lemma 2.2 Non-frequent k-sequences

 k-sequence , is non-frequent if 1 < .

Proof: Because the database is sorted according to the

k-minimum subsequences, it is not possible for to appear

below the -th position when is smaller than .

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

5

Moreover, all the k-minimum subsequences that appear

below the -th position are larger than . In other words,

only the customer sequences above the -th position may

contain . In this case, the support of must be at most -1

and therefore cannot be frequent.

Note that Lemma 2.1 and Lemma 2.2 were applied in

Example 1.1 and Example 1.2, respectively.

After the comparison between 1 and is done, we have

to generate the conditional k-minimum subsequence of each

customer sequence whose k-minimum subsequence is equal

to 1. As the two cases discussed in Section 1.2, we define

the conditional k-minimum subsequence as follows:

Definition 2.5 Conditional k-minimum subsequence

A sequence k is the conditional k-minimum subsequence of

A if both the following conditions hold:

(a) k is a k-sequence and a subsequence of A

(b) , which is a k-sequence and a subsequence of A,

if 1= , < k ; otherwise, k

Note that the generation of conditional k-minimum

subsequences has been illustrated in Section 1.2.

3. The DISC-all algorithm

In this section, we present the DISC-all algorithm that

combines four mining strategies to efficiently find all the

frequent sequences. The DISC-all algorithm is mainly based

on the database partitioning and DISC strategies. At first,

we scan the database to divide the customer sequences into

partitions by their minimum 1-sequences such that the

partitions can be ordered according to the minimum

1-sequences they have. These partitions are called the

first-level partitions. During the partitioning, we can find all

the frequent 1-sequences. For each first-level partition, we

regard its minimum 1-sequence as the prefix in the

PrefixSpan algorithm to find the frequent 2-sequences in it.

For each customer sequence in the first-level partition, we

remove non-frequent 1-sequences and non-frequent

2-sequences to generate a shorter customer sequence. Note

that the minimum 1-sequence of this partition must not be

removed. After that, we divide the reduced customer

sequences into partitions by its 2-minimum sequence. These

partitions are called the second-level partitions. For each

second-level partition, we can also find the frequent

3-sequences in it. The above scheme is named multi-level

partitioning, where the number of levels should be adaptive

and depends on the tradeoff between overheads and profits

brought from partitioning. In this paper, we adopt the

two-level partitioning scheme for the ease of presentation.

For each second-level partition, the DISC-all algorithm

iteratively generates the k-sorted databases where k is larger

than 3. Given a k-sorted database, the frequent k-sequences

can be generated by the DISC strategy. After that, each

customer sequence of the second-level partition is

reassigned to another second-level partition by the next

2-minimum sequence. When all the second-level partitions

under a first-level partition have been processed, each

customer sequence of the first-level partition is also

reassigned to another first-level partition by the next

minimum 1-sequence. Note that the other two strategies are

also incorporated into the DISC-all algorithm. For example,

the removal of non-frequent 2-sequences before generating

the second-level partitions is based on both the strategies of

candidate sequence pruning and customer sequence

reducing. For described above, the DISC-all algorithm uses

a multi-level partitioning scheme to find the frequent

sequences with lengths smaller than 4 and adopt the DISC

strategy to find the other frequent sequences. As the

framework shown in Figure 1 indicates, the generation of

partitions is executed in the breadth-first order, i.e. all the

first-level partitions and then all the second-level partitions.

However, finding frequent sequences from these partitions

is in the depth-first order, i.e. the first-level partition 1, the

second-level partition 1, the second-level partition 2, and so

on. In the following sections, we will introduce the proposed

techniques used in these two components, i.e. multi-level

partitioning and direct sequence comparison, respectively.

Frequent 1-sequences

The original
database

First-level
partition 1

First-level
partition 2

First-level
partition N

Second-level
partition M

Second-level
partition 1

Second-level
partition 2

4-sorted
database

k-sorted
database

Partitioning DSC

Frequent 2-sequences
Frequent 3- sequences

Frequent k-sequences

Frequent 4- sequences

Frequent 1-sequences

The original
database

First-level
partition 1

First-level
partition 2

First-level
partition N

Second-level
partition M

Second-level
partition 1

Second-level
partition 2

4-sorted
database

k-sorted
database

Partitioning DSC

Frequent 2-sequences
Frequent 3- sequences

Frequent k-sequences

Frequent 4- sequences

Figure 1: The framework of the DISC-all algorithm

3.1. Multi-level partitioning

The input of the DISC-all algorithm includes a database

of customer sequences and , while the output is the set of

all the frequent sequences. The DISC-all algorithm based on

two-level partitioning is shown in Figure 2. The first step

finds all the frequent 1-sequences and generates the

first-level partitions by scanning the original database once.

To find all the frequent 1-sequences, we simply use an array

to accumulate the count of each 1-sequence during the

database scan. In the meantime, for each customer

sequence, we also find the minimum 1-sequence and keep

the leftmost position that it appears in the customer

sequence. This position is called the minimum point.

Finally, we classify each customer sequence into a partition

according to its minimum 1-sequence. We call the partition

with the minimum 1-sequence the <()>-partition.

Input: A sequence database DB,

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

6

Output: A set of all the frequent sequences

1. Scan DB once to do:

 (a) Find all the frequent 1-sequences

 (b) Generate first-level partitions by minimum 1-sequences

2. For each first-level partition FP to do:

 2.1 If the minimum 1-sequence is frequent,

 2.1.1 Find all the frequent 2-sequences in FP

 2.1.2 Scan FP once again to do:

 (a) Removing non-frequent 1-sequences/2-sequences

 (b) Generate the second-level partitions under FP

 2.1.3 For each second-level partition SP to do:

 2.1.3.1 Find all the frequent 3-sequences in SP

 2.1.3.2 Let k=4, Repeat

 (a) Generated the k-sorted database of SP

 (b) Find all the frequent k-sequences

 (c) Let k=k+1

 Until (size of SP <) or (no frequent (k-1)-sequence)

 2.1.3.3 Reassign customer sequences from SP to others

 2.2 Reassign customer sequences from FP to others

Figure 2: The DISC-all algorithm
The second step of the DISC-all algorithm processes

each of the first-level partitions in the alphabetic order of the

minimum 1-sequences. Given a <()>-partition, if is

frequent, Step 2.1 will discover all the frequent sequences

that contain as the first item. Therefore, only the items to

the right of the minimum point have to be processed. The

subsequences of a customer sequence may contribute to the

support counts of different frequent sequences in more than

one first-level partition. Therefore, in Step 2.2, for each

customer sequence in the first-level partition that has been

processed, we further find the next minimum 1-sequence in

it and reclassify it into the other first-level partitions.

Example 3.1. Consider the example database in Table 6 and

let be 3. The first-level partition of each customer

sequence is shown in the third column of Table 6 and all the

1-sequences except <(d)> are frequent. For instance, the

first seven customer sequences belong to <(a)>-partition

because their minimum 1-sequences are a. As a result,

initially there are four partitions with disjoint sets of

customer sequences.

In the second step, <(a)>-partition will be processed first

to find all the frequent sequences that contain a as the first

item, e.g. <(a, e)> and <(a)(g, h)>. After that, we find the

next minimum 1-sequence in each of the seven customer

sequences and then reclassify them into the other first-level

partitions, respectively. For instance, CID 1 and 2 are

respectively reassigned into <(c)>-partition and

<(b)>-partition as shown in the rightmost column of Table

6. Note that the reassignments of customer sequences may

lead to the creation of a new partition (e.g. <(c)>-partition)

and the removal of a customer sequence when its minimum

point is at its end (e.g. CID 5).

Table 6: Database and first-level partitions

CID Customer Sequences Initial

Partitions

After processing

<(a)>-partition

1 (a, d)(d)(a, g, h)(c) <(a)>-partition <(c)>-partition

2 (b)(a)(f)(a, c, e, g) <(a)>-partition <(b)>-partition

3 (a, f, g)(a, e, g, h)(c,

g, h)

<(a)>-partition <(c)>-partition

4 (f)(a, c, f)(a, c, e, g, h) <(a)>-partition <(c)>-partition

5 (a, g) <(a)>-partition Removed

6 (a, f)(a, e, g, h) <(a)>-partition <(e)>-partition

7 (a, b, g)(a, e, g)(g, h) <(a)>-partition <(b)>-partition

8 (b, f)(b, e)(e, f, h) <(b)>-partition <(b)>-partition

9 (d, f)(d, f, g, h) <(d)>-partition <(d)>-partition

10 (b, f, g)(c, e, h) <(b)>-partition <(b)>-partition

11 (e, g)(f)(e, f) <(e)>-partition <(e)>-partition

In Step 2.1, given a <()>-partition where is frequent,

we scan the partition once to discover all the frequent

2-seuqneces via a mechanism called the counting array. In

the <()>-partition, item is regarded as the common prefix

of all the frequent 2-sequences to be found from it.

Therefore, the counting array only reserves two entries for

each item x to respectively keep the support counts of the

2-sequences in the forms of <()(x)> and <(x)>.

Moreover, each entry is associated with two values, i.e. the

support count and the last CID when the support count is

updated. The CID information can avoid counting the

repetitions of a 2-sequence in the same customer sequence.

In this way, all the support counts of 2-sequences can be

correctly computed in only one scan.

After that, we reduce the length of each customer

sequence by removing all the non-frequent 1-sequences and

non-frequent 2-sequences. We keep the set of reduced

customer sequences as another copy. Given a customer

sequence in the <()>-partition, the following two

conditions are used to determine whether an item to the right

of the minimum point can be removed or not:

1. The transaction having x contains .

2. The minimum point is to the left of the transaction having

x.

When the condition 1 does not hold, item x can be

removed if <()(x)> is not frequent. When the condition 1

holds but condition 2 does not hold, item x can be removed

if <(x)> is not frequent. If both the conditions hold, item x

can be removed only if both <()(x)> and <(x)> are not

frequent. All the occurrences of cannot be removed

because they may be involved in the support counting for

the frequent sequences with larger lengths. In the meantime,

the reduced customer sequences are classified into the

second-level partitions according to their 2-minimum

sequences.

Example 3.2. Take the <(a)>-partition in Table 6 as an

example. Because <(a)> is frequent, we use the counting

array to accumulate the support counts of 2-sequences

during one scan. Figure 3 shows the results of the counting

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

7

array, where (x) and (_x) refer to the two forms <(a)(x)> and

<(ax)>, respectively. Only <(a)(b)>, <(a)(d)>, <(a)(f)>,

<(ab)>, <(ac)>, and <(ad)> are not frequent. Finally, the

customer sequences can be reduced by removing the

non-frequent sequences except item a. As shown in Table 7,

item c in CID 2 is not removed because <(a)(c)> is frequent.

Moreover, the customer sequences with lengths smaller

than 3, e.g. CID 5, is also removed from the reduced

partition.

 (a) (b) (c) (d) (e) (f) (g) (h)

Support count 6 0 4 1 5 1 6 5

Last CID 7 0 4 1 7 2 7 7

 (_a) (_b) (_c) (_d) (_e) (_f) (_g) (_h)

Support count 0 1 2 1 5 3 7 5

Last CID 0 7 4 1 7 6 7 7

Figure 3: The count array of <(a)>-partition
In Step 2.1.3, with the counting array, we also find the

frequent 3-sequences in each second-level partition in one

scan. After that, we apply the DISC strategy to find the

frequent k-sequences iteratively. Finally, each customer

sequence is reassigned to another second-level partition by

the next 2-minimum sequence. In the next section, we will

present the core of the DISC-all algorithm, i.e. the

techniques for direct sequence comparison.

Table 7: <(a)>-partition with reduced sequences
CID Customer Sequences

1 (a)(a, g, h)(c)

2 (b)(a)(a, c, e, g)

3 (a, f, g)(a, e, g, h)(c, g, h)

4 (f)(a, f)(a, c, e, g, h)

6 (a, f)(a, e, g, h)

7 (a, g)(a, e, g)(g, h)

3.2. Direct sequence comparison

To find all the frequent sequences in a second-level

partition, we adopt the bottom-up approach to start at the

discovery of frequent 4-sequences and repeat it until no

more frequent sequences can be found as indicated by Step

2.1.3.2 in Figure 2. The frequent k-sequence discovery
procedure consists of two stages as shown in Figure 4. The

first stage finds the k-minimum subsequence of each

customer sequence to construct the k-sorted database. The

second stage repeats three steps, i.e. direct sequence

comparison, generation of conditional k-minimum

subsequences, and the re-sorting of k-sorted database. Note

that the customer sequences without conditional

k-minimum subsequences will be removed from the

k-sorted database. Therefore, all the frequent k-sequences in

this partition are found when the size of the k-sorted

database is smaller than .

Input: < 1 2>-partition, , k

Output: All the frequent k-sequences with prefix < 1 2>

1. Scan the < 1 2>-partition once to do:

 (a) Generate the k-minimum subsequence for each

customer sequence
 (b) Construct the k-sorted database SD

2. While (the size of SD) do:

 2.1 Check candidate k-sequence by condition k-sequence

 2.2 Generate the conditional k-minimum subsequences

 2.3 Resort SD by the conditional k-minimum subsequences

Figure 4: Frequent k-sequence discovery
We propose an algorithm named Apriori-KMS that can

generate the k-minimum subsequences in Step 1(a) and a

similar one called Apriori-CKMS that can generate the

conditional k-minimum subsequences in Step 2.2. Step 2.1

is based on the two lemmas described in Section 2,

indicating that the candidate k-sequence is frequent if it is

the same as the condition k-sequence. In this way, we can

determine whether the candidate k-sequence is frequent by

direct sequence comparison. The sorting methods required

in Step 1(b) and 2.3 is based on a mechanism called the

locative AVL-Tree, which can provide efficient sorting and

retrieval. In addition, we also design the bi-level version of

the DISC-all algorithm, which discovers all the frequent

k-sequences and frequent (k+1)-sequences in only one scan

of the k-sorted database.

For the ease of presentation, we call the prefix of a

sequence with length k the k-prefix. For instance, the

3-prefix of <(a)(a, g, h)(c)> is <(a)(a, g)>. According to the

anti-monotone property, the k-minimum subsequence

cannot be frequent if its (k-1)-prefix is not frequent.

Therefore, we utilize the frequent (k-1)-sequences for

generating the k-minimum subsequences to skip the

k-sequence whose (k-1)-prefix is not frequent. When a

k-sorted database is processed, all the frequent

(k-1)-sequences are linked together in the ascending order

and called the (k-1)-sorted list. The Apriori-KMS algorithm

is shown in Figure 5.

At first, the Apriori-KMS algorithm selects the frequent

(k-1)-sequences from the (k-1)-sorted list one by one, where

the smallest one is chosen first. Let the chosen frequent

(k-1)-sequence be F. In Step 4, the customer sequence S is

scanned to find the leftmost match of F and record the

position on S that matches the last item of F, called the

matching point. When the matching point is not at the end of

S, the minimum of the items to the right of the matching

point is found and added to the end of F to form the

k-minimum subsequence of S. If no match is found, the next

frequent (k-1)-sequence is selected for another iteration.

After the k-minimum subsequence is found, each customer

sequence is associated with a pointer named apriori pointer
that refers to a node of the (k-1)-sorted list, whose frequent

(k-1)-sequence is the (k-1)-prefix of the k-minimum

subsequence. This piece of information will be used in the

Apriori-CKMS algorithm.

Input: A customer sequence S

Output: The k-minimum subsequence of S

1. P=the first node of the (k-1)-sorted list

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

8

2. While (P NULL) Do {

3. F=the frequent (k-1)-sequence of P

4. Find the leftmost match of F on S

5. M=the matching position of Fk-1 on S

6. If (F S) and (M End of S) {

7. Z=minimum of the items to the right of SM

8. Return the concatenated sequence <FZ>}

9. Else P=the next node in the (k-1)-sorted list}

10. Return with no result

Figure 5: The Apriori-KMS Algorithm

Example 3.3. Let be 3. Take the <(a)(a)>-partition and its

3-sorted list in Table 8 as an example. At the beginning, we

pick up <(a)(a, e)> to scan CID 1 but no match is found.

After that, we scan CID 1 again and find a match of <(a)(a,

g)>. The matching point is 3 and therefore item c is selected

to generate the 4-minimum sequence <(a)(a, g)(c)>. A

complete 4-sorted database is shown in Table 9, where CID

1 is associated with the apriori pointer referring to the

frequent 3-sequence <(a)(a, g)>.

Table 8: <(a)(a)>-partition and its 3-sorted list
CID Customer Sequences The 3-sorted List

1 (a)(a, g, h)(c) No Frequent 3-sequences

2 (b)(a)(a, c, e, g) 1 (a)(a, e)

3 (a, f, g)(a, e, g, h)(c, g, h) 2 (a)(a, g)

4 (f)(a, f)(a, c, e, g, h) 3 (a)(a, h)

6 (a, f)(a, e, g, h)

7 (a, g)(a, e, g)(g, h)

Table 9: 4-sorted database of <(a)(a)>-partition
CID 4-minimum

Subsequences

Customer Sequences Apriori

Pointer

3 (a)(a, e)(c) (a, f, g)(a, e, g, h)(c, g, h) 1

2 (a)(a, e, g) (b)(a)(a, c, e, g) 1

4 (a)(a, e, g) (f)(a, f)(a, c, e, g, h) 1

6 (a)(a, e, g) (a, f)(a, e, g, h) 1

7 (a)(a, e, g) (a, g)(a, e, g)(g, h) 1

1 (a)(a, g)(c) (a)(a, g, h)(c) 2

Given a customer sequence S and the condition

k-sequence , the goal of the Apriori-CKMS algorithm is

to efficiently find the conditional k-minimum subsequence

from S. By Definition 2.5, if the candidate k-minimum

subsequence is frequent, the conditional k-minimum

subsequence has to be greater than . Otherwise, the

conditional k-minimum subsequence should be greater than

or equal to . Therefore, the Apriori-CKMS algorithm

needs a parameter to indicate whether the conditional

k-minimum subsequence can be equal to or not. Based on

the apriori pointer, the Apriori-CKMS algorithm as shown

in Figure 6 skips the k-sequence whose (k-1)-prefix is not

frequent.

Input: customer sequence S and its apriori pointer P,

condition k-sequence , operation indicator

Output: The conditional k-minimum subsequence of S

under the constraints and
1. X=(k-1)-prefix of , Y=the last item of ,

2. If (P=NULL) Return with no result

3. F=the frequent (k-1)-sequence of P

4. While (F<X) Do {

5. P=the next node in the (k-1)-sorted list

6. If (P=NULL) Return with no result

7. F=the frequent (k-1)-sequence of P}

8. While (P NULL) {

9. F=the frequent (k-1)-sequence pointed to by P

10. Find the leftmost match of F on S

11. M=the matching position of Fk-1 on S

12. If (F S) and (M End of S) {

13. If (F X) Z=minimum of the items to the right of SM

14. Else Z=minimum of Si, Si, (M < i) and (Si Y)

15. If (Z is found) Return <FZ>}

16. P=the next node in the (k-1)-sorted list}

17. Return with no result

Figure 6: The Apriori-CKMS algorithm
The difference between this algorithm and the

Apriori-KMS algorithm is that the conditional k-minimum

subsequence must satisfy the constraint “ ”, where

 is either ‘>’ or ‘ ’. To meet the requirement, from Steps

4~7, we select the smallest frequent (k-1)-sequence from the

ones in the (k-1)-sorted list, which are larger than or equal to

the (k-1)-prefix of . Note that the apriori pointer

associated with each customer sequence can speed up this

selection process. Let the chosen frequent (k-1)-sequence be

F. After that, we follow the same steps of the Apriori-KMS

algorithm to find the matching point. When the matching

point is not at the end of S, the following cases are

considered:

1. When F does not equal the (k-1)-prefix of , we follow

the same steps of the Apriori-KMS algorithm to compose

the conditional k-minimum subsequence.

2. Otherwise, the constraint is required to be checked as we

search the minimum of the items to the right of the

matching point. If such a minimum does not exist, the

next frequent (k-1)-sequence is selected for the following

iteration.

Example 3.4. From Table 9, by Lemma 2.2, the <(a)(a,

e)(c)> is not frequent. By Definition 2.5, the constraint used

in the Apriori-CKMS algorithm includes the condition

4-sequence <(a)(a, e, g)> and an operation indicator ‘ ’.

Moreover, the apriori pointer of CID 3 refers to the frequent

3-sequence <(a)(a, e)>, which equals the 3-prefix of

condition 4-sequence. Therefore, Steps 4~7 can be skipped.

In Step 10, the matching point is 5 and the minimum of the

items that satisfy the constraint is item g in the second

transaction. In this way, the conditional k-minimum

subsequence <(a)(a, e, g)> is obtained. The 4-sorted

database after re-sorting CID 3 is shown in Table 10.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

9

Table 10: Table 9 after re-sorting CID 3
CID 4-minimum

Subsequences

Customer Sequences Apriori

Pointer

2 (a)(a, e, g) (b)(a)(a, c, e, g) 1

4 (a)(a, e, g) (f)(a, f)(a, c, e, g, h) 1

6 (a)(a, e, g) (a, f)(a, e, g, h) 1

7 (a)(a, e, g) (a, g)(a, e, g)(g, h) 1

3 (a)(a, e, g) (a, f, g)(a, e, g, h)(c, g, h) 1

1 (a)(a, g)(c) (a)(a, g, h)(c) 2

For the efficient construction and retrieval of the k-sorted

database, we propose the locative AVL-tree such that the

condition k-sequence can be quickly located. The locative

AVL tree focuses on two issues, i.e. how to find the

condition k-sequence by the access key and how to maintain

the access key. For the first issue, we propose an algorithm

that can quickly find the node corresponding to , indicating

the location of condition k-sequence. The details can be

found in [4]. To deal with the second issue, we modify the

adjustments for the AVL-tree balance, which can be found

in [14].

In a locative AVL-tree, when the candidate k-sequence is

found frequent, all the customer sequences contained in the

corresponding node can be regarded as a virtual partition.

From this virtual partition, each frequent (k+1)-sequence

whose k-prefix is the candidate k-sequence can be derived.

Therefore, we employ the counting-array similar to the one

used in Section 3.1 to compute the support count of each

(k+1)-sequence whose k-prefix is the candidate k-sequence.

Based on the anti-monotone property, all the frequent

(k+1)-sequences can be discovered from these virtual

partitions. Therefore, we can find the frequent sequences

with lengths k and k+1 via only one call to the frequent

k-sequence discovery procedure. This technique is named

bi-level and used as the version of our algorithm for

experiments.

Example 3.5. Following Example 3.3, by Lemma 2.1,

<(a)(a, e, g)> is a frequent 4-sequence. Moreover, CID 2, 3

and 4 constitute a virtual partition that can be used to

discover the frequent (k+1)-sequence whose k-prefix is

<(a)(a, e, g)>. During running the Apriori-CKMS algorithm

to find the conditional 4-minimum sequences, a

counting-array is also used to accumulate the support count

of each 5-sequence whose 4-prefix is <(a)(a, e, g)>. Figure 7

shows the results after three customer sequences have been

processed, indicating that <(a)(a, e, g, h)> is the only one

frequent 5-sequence with the 4-prefix <(a)(a, e, g)>.

 (a) (b) (c) (d) (e) (f) (g) (h)

Support count 0 0 1 0 0 0 1 1

Last CID 0 0 3 0 0 0 3 3

 (_a) (_b) (_c) (_d) (_e) (_f) (_g) (_h)

Support count 0 0 0 0 0 0 0 3

Last CID 0 0 0 0 0 0 0 3

Figure 7: Counting array for the bi-level version

4. Performance Evaluation

The experiments are made upon the Intel Pentium 4 CPU

2.8GHz with 512 MB main memory and Microsoft

Windows XP Professional. The databases used in our

experiments are synthesized via the IBM data generator [1]

with the version dated July 22, 1997. In parameter setting,

we adopt most of the default values for the command

options provided by the data generator, except the

followings:

Table 11: Parameter setting of self-tuned options
Command

Option

Description Value

Ncust Number of customers 50K~500K

Slen Average number of transactions per

customer

10

Tlen Average number of items per

transaction

2.5

nitems Number of different items 1K

seq.patlen Average length of maximal pattern 4

4.1. Performance evaluation of DISC-all

We compare the DISC-all algorithm with the PrefixSpan

algorithm [9] in efficiency. In addition to the basic version

of the PrefixSpan algorithm, we also consider the version

based on pseudo-projection named Pseudo in the

comparisons. The Pseudo algorithm employs a mechanism

to link together all the customer sequences in a projection

database. This mechanism can reduce the costs on

projecting databases when the projected database can fit

into the main memory. Note that we adopt the bi-level

version of our algorithm in all the experiments.

Based on the parameter setting in Table 11, we generate a

series of databases whose sizes range from 50K to 500K.

The parameters except the database size are the same as the

setting used in the IBM data generator. Figure 8 shows the

experimental results under different numbers of customer

sequences. The DISC-all algorithm outperforms the others

for all these databases even when the minimum support

threshold is set to 0.0025. Moreover, the improvement of

the DISC-all algorithm enlarges as the database size

increases. The reason why the PrefixSpan algorithm does

not adapt to large databases is because the number of

projections increases as the growth of database size. By

contrast, the DISC-all algorithm can skip more non-frequent

sequences during direct sequence comparison because

increases as the growth of database size.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

10

0

100

200

300

400

500

50 100 150 200 250 300 350 400 450 500

Number of the customer sequences (thousand)

T
im

e(
se

co
n

d

DISC - all

Pseudo

PrefixSpan

Figure 8: Comparisons on database sizes
In the second experiment, based on the parameter setting

in [8] where the slen, tlen and seq.patlen are all set to 8, we

generate a database with 10K customer sequences. Figure 9

shows the experimental results under different settings of

’s, where the minimum support threshold is the proportion

of to the database size.

0

10

20

30

40

50

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02

Minimum Support

T
im

e(
se

co
n

d

DISC-all

Pseudo

PrefixSpan

Figure 9: Comparisons on different ’s
Obviously, the DISC-all algorithm is the best of the three

because it always spends the least amount of processing

time when the minimum support threshold ranging from

0.02 to 0.0025. When the minimum support threshold is set

to 0.0025, we observe that there are more than 100K

frequent sequences and the length of the maximal frequent

sequences is at least 14.

4.2. Discussions on multi-level partitioning

The multi-level partitioning scheme is good at reducing

the number of customer sequences such that the

unnecessary decompositions of customer sequences can be

eliminated. Given a partition Q, let NQ be the number of its

child partitions. To evaluate the effects of partitioning, for

each partition, we estimate the average ratio of the size of its

child partition to its partition size, which is called the

non-reduction rate and denoted by NRR, as follow:

2,
Size

Size

N

1
NRR

Qofpartitionchildaisp Q

p

Q

Q

Given a < >-partition where is k-sequence, the

simplest way to compute the NRR of this partition is to

consider the support count of each frequent (k+1)-sequence

discovered in this partition as the size of its child partition.

We define the average NRR as the average of the NRR’s for

all the partitions in the same level under the multi-level

partitioning scheme. Table 12 shows the average NRR of

each level under different minimum support thresholds and

the database size 10K. Obviously, each of the first-level

partitions is much smaller than the original database

according to its average NRR. However, the partitions at

different levels may have various effects on the NRR. For

example, when the minimum support threshold is 0.005, the

average NRR of the second-level partitions is 0.64, which is

much higher than the one of the first-level partitions (0.11)

but much smaller than the one of the third-level partitions

(0.9). Based on the multi-level partitioning scheme, the

partition size is never smaller than . As the partitioning

goes to a deeper level, the partition size is getting smaller

and close to . Therefore, the NRR of a partition tends to

become larger at the deeper level.

Table 12: Average NRR under different ’s
Average

NRR
Original 1 2 3 4 5 6 7 8

0.02 0.0027 0.18 - - - - - - -

0.0175 0.0026 0.18 - - - - - - -

0.015 0.0025 0.16 - - - - - - -

0.0125 0.0024 0.15 - - - - - - -

0.01 0.0022 0.14 0.92 - - - - - -

0.0075 0.002 0.12 0.9 0.98 0.98 - - - -

0.005 0.0019 0.11 0.64 0.9 0.94 0.97 0.99 - -

0.0025 0.0018 0.08 0.43 0.83 0.85 0.85 0.86 0.87 0.90

In Table 13, for the database size 10K, the DISC-all

algorithm can achieve the most significant improvement

when the minimum support threshold is 0.0075. By contrast

with Table 12, we find that both the NRR of the original

database and the average NRR of the first-level partitions

are small (0.002 and 0.12). Moreover, all the average NRR’s

of the partitions at the other levels are large (0.9, 0.98, and

0.98). From the fact that the DISC-all algorithm statically

replaces the database partitioning strategy with the DISC

strategy at level 2, we conclude that the database

partitioning strategy prefers the partition with a low NRR.

Considering the extreme case, if the NRR of a partition is 1,

all the child partitions have the same sizes as it has.

Therefore, the overhead is against the benefit under the

database partitioning strategy.

From the above observation, the divide between the

database partitioning strategy and the DISC strategy is

important to the performance of the DISC-all algorithm.

Therefore, we further develop a dynamic version of the

DISC-all algorithm, called the Dynamic DISC-all
algorithm, which can adapt the divide between the database

partitioning strategy and DISC strategy to the growth of

NRR. Initially, this algorithm repeatedly adopted the

database partitioning strategy. When the NRR of a partition

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

11

becomes larger than a predefined threshold, the DISC

strategy is used to find all the remaining frequent sequences

in this partition. The Dynamic DISC-all algorithm is

attached in the Appendix.

Table 13: The ratio of Pseudo to DISC-all
Pseudo DISC-all Pseudo/DISC-all

0.0025 38.234 10.656 3.588026

0.005 17.015 2.203 7.723559

0.0075 10.235 1.234 8.294165

0.01 7.375 0.906 8.140177

0.0125 5.969 0.766 7.792428

0.015 5.234 0.703 7.445235

0.0175 4.672 0.671 6.962742

0.02 4.282 0.64 6.690625

4.3. Performance evaluation of Dynamic DISC-all

In this experiment, we adopt most of the default values

provided by the data generator, except 50K customer

sequences and 1000 items. Let the average number of

transactions per customer sequence in the entire database be

denoted as . Moreover, we generate a series of databases

whose ’s range from 10 to 40. The minimum support

threshold is set to 0.005. Table 14 shows the average NRR’s

of each level during processing these databases.

From Table 14, we observe that the average NRR of a

partition in each level tends to decrease as the growth of .

The reason is as follows. The growth of may lead to the

enlargement of both the partition and its child partition,

which will result in the change of the NRR of this partition.

When the increase of the partition is much larger than most

of the increases of its child partitions, the NRR of this

partition will be decreased.

Table 14: Average NRR under different ’s
Average NRR Original 1 2 3 4 5 6

10 0.0072 0.1 0.83 0.83 - - -

15 0.0096 0.09 0.66 0.81 0.87 0.99 -

20 0.0114 0.09 0.56 0.81 0.83 0.98 -

25 0.0129 0.1 0.26 0.75 0.85 0.85 0.82

30 0.014 0.11 0.2 0.74 0.82 0.88 0.80

35 0.0151 0.11 0.2 0.71 0.78 0.84 0.91

40 0.016 0.12 0.2 0.52 0.76 0.78 0.77

Figure 10 shows the process time of different approaches

for these databases. Obviously, the Dynamic DISC-all

algorithm outperforms all the others under different average

numbers of transactions per customer sequence. Moreover,

the DISC-all algorithm also outperforms the other two

approaches at all cases except for 40. The reason why the

DISC-all algorithm becomes worse than the Pseudo

algorithm when is 40, can be observed as follows. As

described in Sec. 4.2, the multi-level database partitioning

strategy prefers the partition with a low NRR. However, in

Table 14, for 40, the average NRR at level 2 and 3 are 0.2

and 0.52 respectively. By contrast with the dynamic version,

the DISC-all algorithm statically replaces the database

partitioning strategy with the DISC strategy at level 2.

Therefore, it does not take full advantage of the database

partitioning at the levels deeper than 2 and the performance

is worsened when is 40.

0

1000

2000

3000

4000

5000

10 15 20 25 30 35 40
Average number of transactions per customer

T
im

e
(

S
ec

o
n

d
)

DISC - all

Dynamic DISC - all

Pseudo

PrefixSpan

Figure 10: Comparisons on different ’s
As a summary, the database partitioning strategy is good

for the partition with a small NRR, while its overhead is

against the benefit when the NRR of a partition is large. In

the latter case, the DISC strategy, which is not influenced by

the NRR, can avoid unnecessary decompositions of

customer sequences. Therefore, the Dynamic DISC-all

algorithm performs much better than the DISC-all algorithm

when the NRR is varied.

5. Conclusion

In this paper, we propose the DISC strategy that reduces

candidate sequences without using the anti-monotone

property. Moreover, we design the DISC-all algorithm that

combines it with the other strategies used in the pervious

work to find frequent sequences in large databases.

Furthermore, we develop the Dynamic DISC-all algorithm

that dynamically combines the multi-level partitioning

scheme with the procedure of frequent sequence discovery.

Finally, we make experiments and compare our algorithm

with the PrefixSpan algorithm to reveal the usefulness of the

DISC strategy and the characteristic of the database

partitioning strategy. The following summarizes the main

contributions of this paper:

1. We propose a new strategy for mining sequential patterns

and prove its usefulness.

2. We design efficient algorithms to meet the requirements

of the proposed strategy.

3. We classify the related works and summarize their

strategies.

4. We design an algorithm that takes advantages of all the

strategies.

5. We analyze the partition strategy to design the dynamic

version of our algorithm and achieve a much better

performance.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

12

The DISC strategy is not limited by the anti-monotone

property and therefore it can be applied to many of the real

world applications. The so-called weighting applications are

very common and important in the real world. For example,

when finding the traversal patterns in the WWW, different

pages may have a variety of importance, e.g. page weights.

Moreover, in DNA sequence analysis, some genes may be

more important than the others in a particular disease. For

both the scenarios, a pattern depends on not only the number

of its occurrences but also its weight, defined by a specific

application. It is challenging and interesting to apply the

DISC strategy to such kinds of weighting applications.

6. Acknowledgement

This work was partially supported by the MOE Program

for Promoting Academic Excellence of Universities under

the grant number 89-E-FA04-1-4, and the NSC under the

contract number 92-2213-E-007-094.

References

[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,”

Proceedings of IEEE Conference on Data Engineering, pp.

3-14, 1995.

[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu “Sequential

Pattern Mining using A Bitmap Representation,” Proceedings

of ACM SIGKDD Conference, pp. 429-435, 2002.

[3] J. K. Bonfield and R. Staden, “ZTR: A New Format for DNA

Sequence Trace Data,” Bioinformatics, 18(1): 3-10, 2002.

[4] D. Y. Chiu, Y. H. Wu, A. L. P. Chen, “An Efficient Algorithm

for Mining Frequent Sequences by the DISC Strategy,”

Technical Report, 2003.

[5] M. N. Garofalakis, R. Rastogi, and K. Shim, “Mining

Sequential Patterns with Regular Expression Constraints,”

IEEE Transactions on Knowledge and Data Engineering,

14(3): 530-552, 2002.

[6] J. W. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and

M. C. Hsu, “FreeSpan: Frequent Pattern-Projected Sequential

Pattern Mining,” Proceedings of ACM Conference on

Knowledge Discovery and Data Mining, pp. 355-359, 2000.

[7] J. L. Hsu, C. C. Liu, and A. L. P. Chen “Discovering

Nontrivial Repeating Patterns in Music Data,” IEEE

Transactions on Multimedia, 3(3): 311-325, 2001.

[8] N. Lesh, M. J. Zaki, and M. Ogihara, “Mining Features for

Sequence Classification,” Proceedings of ACM Conference

on Knowledge Discovery and Data Mining, pp. 342-346,

1999.

[9] J. Pei, J. W. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.

Dayal, and M. C. Hsu, “PrefixSpan: Mining Sequential

Patterns Efficiently by Prefix-Projected Pattern Growth,”

Proceedings of IEEE Conference on Data Engineering, pp.

215-224, 2001.

[10] J. Pei, J. W. Han, and W. Wang, “Mining Sequential Patterns

with Constraints in Large Databases,” Proceedings of ACM

Conference on Information and Knowledge Management,

2002.

[11] H. Pinto, J. W. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal,

“Multi-Dimensional Sequential Pattern Mining,” Proceedings

of ACM Conference on Information and Knowledge

Management, pp. 81-88, 2001.

[12] P. Y. Rolland, “FlExPat: Flexible Extraction of Sequential

Patterns,” Proceedings of IEEE Conference on Data Mining,

pp. 481-488, 2001.

[13] R. Srikant and R. Agrawal, “Mining Sequential Patterns:

Generalizations and Performance Improvements,”

Proceedings of International Conference on Extending

Database Technology, pp. 3-17, 1996.

[14] M. A. Weiss, Data Structures and Algorithm Analysis in C –

2nd ed., Addison-Wesley, pp. 110-122, 1997.

[15] J. J. Wesselink, B. Iglesia, S. A. James, J. L. Dicks, I. N.

Roberts, and V. J. Rayward-Smith, “Determining a Unique

Defining DNA Sequence for Yeast Species Using Hashing

Techniques,” Bioinformatics, 18(7): 1004-1010, 2002.

[16] Y. H. Wu and A. L. P. Chen, “Prediction of Web Page

Accesses by Proxy Server Log,” World Wide Web: Internet

and Web Information Systems, 5(1): 67-88, 2002.

[17] J. Yang, W. Wang, P. S. Yu, and J. W. Han, “Mining Long

Sequential Patterns in a Noisy Environment,” Proceedings of

ACM SIGMOD Conference, 2002.

[18] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining

Frequent Sequences,” Machine Learning, 42(1): 31-60, 2001.

Appendix

The Dynamic DISC-all Algorithm

Input: A < >-partition X, where the length of is k and the

maximum NRR threshold

Output: All the frequent sequences in the < >-partition

1. Scan X once to find all the frequent (k+1)-sequences with

prefix < >

2. Let NRRX=NRR of X

3. If (NRRX <)

 (a) Generate the set of partitions at the next level SP

 (b) For each partition in SP, call Dynamic DISC-all
4. Else

 Let k=k+2, Repeat

 (a) Generated the k-sorted database of X

 (b) Call Frequent k-sequence discovery in Figure 4

 (c) Let k=k+1

 Until (size of X <) or (no frequent (k-1)-sequence)

Note: for the original database, =NULL and k=0.

Proceedings of the 20th International Conference on Data Engineering (ICDE’04)
1063-6382/04 $ 20.00 © 2004 IEEE

