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Abstract

Mining sequential patterns in large databases is an 
important research topic. The main challenge of mining 

sequential patterns is the high processing cost due to the 

large amount of data. In this paper, we propose a new 
strategy called DIrect Sequence Comparison (abbreviated 

as DISC), which can find frequent sequences without having 

to compute the support counts of non-frequent sequences. 
The main difference between the DISC strategy and the 

previous works is the way to prune non-frequent sequences. 

The previous works are based on the anti-monotone 
property, which prune the non-frequent sequences 

according to the frequent sequences with shorter lengths. 

On the contrary, the DISC strategy prunes the non-frequent 
sequences according to the other sequences with the same 

length. Moreover, we summarize three strategies used in the 
previous works and design an efficient algorithm called 

DISC-all to take advantages of all the four strategies. The 

experimental results show that the DISC-all algorithm 
outperforms the PrefixSpan algorithm on mining frequent 

sequences in large databases. In addition, we analyze these 

strategies to design the dynamic version of our algorithm, 
which achieves a much better performance. 

1. Introduction 

Mining sequential patterns from a large database is 

important and interesting to the fundamental research in the 

data mining community [1][6][8][11][12]. It is also useful 

for a variety of applications such as marketing data analysis 

and stock trend prediction. There are three major topics in 

this research field. One is to develop efficient algorithms for 

mining sequential patterns [9][13][18]. Another is to add 

restrictions on the sequential patterns to be mined, such as 

the ones in a noisy environment [17] and the ones that 

satisfy some constraints [5][10]. The other is to apply the 

techniques of mining sequential patterns to special data 

types, such as the Web [16], music [7], and biological data 

[3][15]. 

*Contact author 

Based on the problem definition in [1], a large 

transaction database has three fields, i.e. customer id, 

transaction-time, and the items purchased. An itemset is a 

non-empty set of items and a sequence is an ordered list of 

itemsets. In this way, each transaction corresponds to an 

itemset. Each customer with a unique customer id may have 

more than one transaction with different transaction-times. 

All the transactions from a customer are ordered by 

increasing transaction-times to form a sequence, called the 

customer sequence [1]. 

Following the definitions in [1], the length of a sequence 

is the total number of item occurrences in it. A k-sequence

stands for a sequence with length k. Let SA and SB

respectively denote two sequences <A1A2…An> and <B1

B2…Bm>, where Ai’s and Bj’s are itemsets and m  n. If 

there exist integers i1<i2< … <in such that A1 Bi1
, A2 Bi2

,

…, and An Bin
, it is said that SB contains SA and SA is a 

subsequence of SB. Furthermore, if a customer sequence 

contains a sequence SA, we call that the customer sequence 

supports SA. The support count of a sequence is the number 

of customer sequences that support it. If the support count of 

a sequence is larger than a user-specified minimum support 
count, we call it a frequent sequence. Given a database of 

customer sequences, the goal of this paper is to efficiently 

find all the frequent sequences. 

1.1. Related works 

The main challenge toward the problem of mining 

sequential patterns is the high processing cost due to a large 

amount of data. Many algorithms have been proposed to 

speed up the mining process. The representative ones are 

GSP [13], SPADE [18], SPAM [2], and PrefixSpan [9]. 

Srikant and Agrawal [13] adopt a bottom-up approach in the 

GSP algorithm, which generates frequent 1-sequences first, 

then frequent 2-sequences, and so on. This approach 

generates candidate k-sequences from frequent 

(k-1)-sequences in iteration based on the anti-monotone

property that all the subsequences of a frequent sequence 

must be frequent. In any iteration, the candidate 

k-sequences are determined to be frequent based on their 

support counts. The GSP algorithm costs a lot to decompose 
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the customer sequences for the computation of support 

counts.

Another obvious problem of the GSP algorithm is the 

large number of candidate sequences. To solve this 

problem, Zaki [18] introduces the lattice concept in the 

SPADE algorithm to divide the candidate sequences into 

groups by items such that each group can be completely 

stored in the main memory. In addition, this algorithm uses 

the ID-List technique to reduce the costs for computing 

support counts. An ID-list of a sequence keeps a list of pairs, 

which indicate the positions that it appears in the database. 

In a pair, the first value stands for a customer sequence and 

the second refers to a transaction in it, which contains the 

last itemset of the sequence. For the example database in 

Table 1, the ID-list of sequence <(a, g)(b)> is <(1,2), (1,6), 

(4,3), (4,4)>, where the pair (1,2) means that this sequence 

appears in the first customer sequence and ends in the 

second transaction. Note that a sequence may appear more 

than once in the same customer sequence, and therefore 

more than one pair will be recorded. 

Table 1: The example database 
CID Customer Sequences 

1 (a, e, g)(b)(h)(f)(c)(b, f) 

2 (b)(d, f)(e) 

3 (b, f, g) 

4 (f)(a, g)(b, f, h)(b, f) 

The SPADE algorithm also adopts a bottom-up approach 

to generate frequent sequences with different lengths. By 

iteration, this approach computes the support count of a 

candidate k-sequence generated by merging the ID-lists of 

any two frequent (k-1)-sequences with the same 

(k-2)-prefix. Consider the same database in Table 1. To 

compute the support count of sequence <(a, g)(h)(f)>, the 

SPADE algorithm merges the two ID-lists of sequences <(a, 

g)(h)> and <(a, g)(f)>, which are <(1,3), (4,3)> and <(1,4), 

(1,6), (4,3), (4,4)> respectively. As a result, the ID-list of 

sequence <(a, g)(h)(f)> is <(1, 4), (1, 6), (4, 4)>, indicating 

that this sequence appears in the first and the fourth 

customer sequences and therefore has a support count of 2. 

The SPADE algorithm costs a lot to repeatedly merge the 

ID-lists of frequent sequences for a large number of 

candidate sequences. To reduce this cost of merging, Ayres 

et al. [2] adopt the lattice concept in the SPAM algorithm 

but represent each ID-list as a vertical bitmap. The SPAM 

algorithm is efficient under the assumption that all the 

bitmaps can be completely stored in the main memory. 

On the other hand, Pei et al. [9] employ the projection

scheme in the PrefixSpan algorithm to project the customer 

sequences into overlapping groups called projected 
databases such that all the customer sequences in each 

group have the same prefix which corresponds to a frequent 

sequence. For the example database in Table 1, assuming 

that the minimum support count is two, the PrefixSpan 

algorithm first scans the database to find the frequent 

1-sequences, i.e. <(a)>, <(b)>, <(e)>, <(f)>, <(g)>, and 

<(h)>. After that, this algorithm generates the projected 

database for each frequent 1-sequence. For instance, Table 2 

shows the projected database of <(a)>. For this projected 

database, the PrefixSpan algorithm continues the discovery 

of frequent 1-sequences to form the frequent 2-sequences 

with prefix <(a)>. In this way, the PrefixSpan algorithm 

recursively generates the projected database for each 

frequent k-sequence to find frequent (k+1)-sequences. 

Obviously, the PrefixSpan algorithm costs a lot to 

recursively generate a large number of projected databases. 

Table 2: The projected database of <a> 
CID Customer Sequences 

1 (_, e, g)(b)(h)(f)(c)(b, f) 

4 (_, g)(b, f, h)(b, f) 

We summarize the three strategies that are used in the 

related works as follows. 

1. Candidate sequence pruning: This strategy prunes 

away the candidate sequences that cannot be frequent as 

early as possible. All the GSP, SPADE, SPAM, and 

PrefixSpan algorithms adopt this strategy based on the 

anti-monotone property. This strategy contributes to the 

reduction of processing costs and storage overheads for 

support counting. 

2. Database partitioning: This strategy partitions the 

database into groups such that each group can fit into 

the main memory. The PrefixSpan algorithm adopts 

this strategy by projecting the database according to the 

prefixes of customer sequences, while the SPADE and 

SPAM algorithms implicitly partition the database 

based on the candidate sequences. This strategy 

eliminates the unnecessary decompositions of customer 

sequences while adding the extra costs for partitioning 

the database. 

3. Customer sequence reducing: This strategy reduces 

the customer sequences as much as possible. The 

PrefixSpan algorithm adopts this strategy in its 

projection scheme. For example, the fourth customer 

sequence <(f)(a, g)(b, f, h)(b, f)> in Table 1 is reduced 

to <(_, g)(b, f, h)(b, f)> in Table 2. This strategy 

contributes to the reduction of processing costs for 

decomposing the customer sequences. 

1.2. Overview of our approach 

As opposed to the above strategies, in this paper, we 

propose the fourth strategy, named DIrect Sequence 

Comparison (abbreviated as DISC) to reduce the costs for 

support counting and the decomposition of customer 

sequences. The goal of this strategy is to recognize the 

frequent sequences for a specific length k without having to 

compute the support counts of the non-frequent sequences. 

Furthermore, we propose an algorithm called DISC-all that 

combines all the four strategies to efficiently find frequent 

sequences in large databases.  
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In our approach, we define the order of two sequences 

having the same length. Given two sequences, we examine 

their items from left to right and compare the leftmost 

distinct items by the alphabetical order. For example, 

<(a)(b)(h)> is smaller than <(a)(c)(f)> because in the 2nd

transactions, b is smaller than c. It cannot distinguish the 

cases where the items contained in both sequences are the 

same while their distributions in the sequences are different, 

e.g., <(a, b)(c)> and <(a)(b, c)>. Therefore, before finding 

the leftmost distinct items, we examine the common 

prefixes of two sequences from left to right and identify the 

leftmost items located in different transactions. A sequence 

is smaller if its leftmost item found is located in an earlier 

transaction, e.g., <(a, b)(c)> is smaller than <(a)(b, c)>. 

The DISC strategy then iteratively checks whether a 

k-sequence is frequent from the minimum k-sequence. For 

this reason, we find the k-minimum subsequence in each 

customer sequence and sort customer sequences by the 

order of their associated k-minimum subsequence. After 

customer sequences are sorted, we get a k-sorted database. 

For example, Table 3 is the 3-sorted database of Table 1. In 

a k-sorted database, we focus on two positions, i.e., the first 

position and the -th position where  is the minimum 

support count. The k-minimum subsequence at the first 

position is denoted by 1 and the k-minimum subsequence 

at the -th position is denoted by .

The main idea of the DISC strategy is to compare 1 with 

, to decide whether 1 is a frequent k-sequence or not. If 

1 is equal to , then all the k-minimum sequences in the 

k-sorted database between 1 and  must all be equal to 1.

Therefore, 1 must be frequent. In this case, the next 

potential frequent k-sequence must be greater than  by the 

order we defined. Therefore, for each customer sequence 

whose associated k-minimum subsequence is equal to 1,

we find the minimum k-sequence greater than  (called the 

conditional k-minimum sequence) and update the position of 

each customer sequences in the k-sorted database. The 

DISC strategy then repeats its process to find the next 

frequent k-sequence. If 1 is not equal to , there is not 

enough customer sequence to support 1, and therefore 1 is 

not frequent. In this case, the next potential frequent 

k-sequence must be greater than or equal to . Therefore, 

for each customer sequence whose associated k-minimum 

subsequence is smaller than , we find the conditional 

k-minimum sequence which is greater than or equal to 

and update the position of each customer sequences in the 

k-sorted database. The DISC strategy then repeats its 

process to find the next frequent k-sequence. 

The DISC strategy uses a k-sorted database to find all the 

frequent k-sequences and skips most non-frequent 

k-sequences by checking only the conditional k-minimum 

subsequences. In this way, all the frequent k-sequences can 

be found without computing the support counts of 

non-frequent ones.

Table 3: The 3-sorted database of Table 1
CID 3-minimum Subsequences Customer Sequences 

1 (a)(b)(b) (a, e, g)(b)(h)(f)(c)(b, f) 

4 (a)(b)(b) (f)(a, g)(b, f, h)(b, f) 

2 (b)(d)(e) (b)(d, f)(e) 

3 (b, f, g) (b, f, g) 

In the following, two examples are used to show the main 

advantages of the DISC strategy. 

Example 1.1. From Table 3, it can be seen that the customer 

sequences with the same k-minimum subsequences are 

located in the continuous positions of the k-sorted database. 

Moreover, the minimum of all the k-minimum 

subsequences must be located in the first N positions if its 

support count is exactly N. For instance, the sequence 

<(a)(b)(b)> is the minimum and its support count is equal to 

2. Therefore, we can determine whether 1 is frequent by 

simply comparing 1 and .

Example 1.2. Considering Table 3, if  is 3, <(a)(b)(b)> 

( 1) is not frequent. From this, we also know that the 

3-sequences smaller than <(b)(d)(e)> ( ), e.g. <(a)(b)(c)> 

and <(a)(b, f)> cannot be frequent. Therefore, for CID 1 and 

4, we generate its conditional 3-minimum sequences, which 

should be larger than or equal to <(b)(d)(e)>. As a result, we 

have another 3-sorted database with new 1 and  as shown 

in Table 4. In this way, all the non-frequent 3-sequences 

smaller than <(b)(d)(e)> are skipped. 

Table 4: Table 3 after re-sorting CID 1 and 4 
CID 3-minimum Subsequences Customer Sequences 

2 (b)(d)(e) (b)(d, f)(e) 

4 (b, f)(b) (f)(a, g)(b, f, h)(b, f) 

3 (b, f, g) (b, f, g) 

1 (b)(f)(b) (a, e, g)(b)(h)(f)(c)(b, f) 

As a result, the DISC strategy has the following 

advantages: 

1. Only the support counts of frequent sequences are 

required to be computed. That is, no candidate sequence 

is generated. 

2. As many of the non-frequent sequences are skipped, the 

costs for decomposing customer sequences are implicitly 

reduced. 

3. The frequent k-sequences can be directly discovered 

without following the bottom-up approach. 

In this paper, we propose an algorithm called DISC-all

that combines all the four strategies to efficiently find 

frequent sequences in large databases. Compared with the 

previous work, our algorithm has the same advantages that 

come from the three strategies and more from the DISC 

strategy. The existing algorithms and their strategies are 

summarized in Table 5. 

The rest of this paper is organized as follows. The basic 

definitions and lemmas used for the DISC strategy are 

presented in Section 2. After that, we describe the details of 
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the DISC-all algorithm in Section 3. In Section 4, the 

performance of the DISC-all algorithm is evaluated via a 

series of experiments and the efficiency issue is further 

discussed according to the observations on the experiment 

results. Finally, we make conclusions on this work with 

future works in Section 5. 

Table 5: The existing algorithms and strategies 
Algorithm 

Strategy 

Candidate 

Sequence 

Pruning 

Database 

Partitioning 

Customer 

Sequence 

Reducing

DISC

GSP     

SPADE    

SPAM    

PrefixSpan 

DISC-all 

2. Basic definitions and lemmas 

As described above, for sorting the customer sequences, 

we have to provide a way to compare two sequences. Given 

two sequences, we first renumber the transactions in each 

sequence from left to right and associate each item with the 

corresponding number (called the transaction number). For 

instance, in <(a)(b)(c, d)(e)>, the transaction number of the 

five items are 1, 2, 3, 3, and 4, respectively. In this way, a 

sequence can be represented in the form of <A1A2…An>

where each Ai is associated with two values, i.e. an item and 

a transaction number (denoted as Ai.item and Ai.no). Based 

on the alphabetic order, we define a specific position at two 

sequences that can distinguish them as follows: 

Definition 2.1 Differential point 

Given two sequences A=<A1A2…An> and B=<B1B2…Bm>,

the j-th position in both sequences is the differential point if

both the following conditions hold: 

(a) i<j, (Ai.item=Bi.item) and (Ai.no=Bi.no)

(b) (Aj.item Bj.item) and (Aj.no Bj.no)
Condition (a) stands for the common prefixes of the two 

sequences, while condition (b) refers to the first position in 

both sequences that are different. Without loss of generality, 

when a sequence is the prefix of another sequence, we can 

add a special item that is smaller than any other item to the 

end of the shorter sequence as the differential point. In this 

way, given two sequences, at most one differential point can 

be found to determine their order as follows: 

Definition 2.2 Comparative order 

Given two sequences A=<A1A2…An> and B=<B1B2…Bm>,

A=B if no differential point can be found. Otherwise, let the 

differential point be j and A<B if one of the following 

conditions holds: 

(a) Aj.item<Bj.item 

(b) (Aj.item=Bj.item) and (Aj.no<Bj.no) 
Finally, A>B if both the above conditions do not hold. 

Example 2.1. Given two sequences A=<(a, c, d)(d, b)> and 

B=<(a, d, e)(a)>, the differential point is the second position 

because A2.item is smaller than B2.item. Given another 

sequence C=<(a, c)(d, a)>, the differential point of A and C 

is the third position because A3.no is smaller than B3.no. By 

Definition 2.2(a), we have A<B. Moreover, we have A<C 

according to Definition 2.2(b). 

Based on the comparative order, we define the 

k-minimum subsequence of a customer sequence and the 

k-minimum order that determine the order of sequences 

based on their k-minimum subsequences as follows: 

Definition 2.3 K-minimum subsequence 

A sequence k is the k-minimum subsequence of a sequence 

A if both the following conditions hold: 

(a) k is a k-sequence and a subsequence of A

(b)  k-sequence , which is a subsequence of A, k

Definition 2.4 K-minimum order 

Let the signs =k, <k, and >k be the comparative operators for 

the denotation of k-minimum order. Given two sequences A 

and B whose k-minimum subsequences are k and k

respectively, we define the k-minimum order of A and B as 

follows: 

(a) A=kB if k= k

(b) A<kB if k< k

(c) A>kB if k> k

Example 2.2. Considering sequence A in Example 2.1, by 

Definition 2.3, we have 1-minimum sequence <(a)>, 

2-minimum sequence <(a)(b)>, 3-minimum sequence <(a, 

c)(b)>, 4-minimum sequence <(a, c, d)(b)>, and 5-minimum 

sequence <(a, c, d)(d, b)>. Moreover, the 3-minimum 

sequences of B and C are <(a, d)(a)> and <(a, c)(a)>, 

respectively. By Definition 2.4, we have the 3-minimum 

order C<3A<3B and the 2-minimum order C=2B<2A.

As Section 1.2 depicts, the customer sequences can be 

sorted into the k-sorted database by the k-minimum order. 

The k-minimum subsequence at the first position of the 

k-sorted database is called the candidate k-sequence and 

denoted by 1. Given a minimum support count , the 

k-minimum subsequence at the -th position of the k-sorted 

database is called the candidate k-sequence and denoted by 

. As a result, we have the following lemmas to show the 

correctness of the DISC strategy. 

Lemma 2.1 Frequent k-sequences 

1 is frequent if 1= .

Proof: Because the database is sorted according to the 

k-minimum subsequences, 1 must repeatedly appear at the 

first  positions when 1 equals . In other words, the first 

 customer sequences in the k-sorted database take 1 as 

their k-minimum subsequences. In this case, the support of 

1 must be at least  and therefore 1 is frequent. 

Lemma 2.2 Non-frequent k-sequences 

 k-sequence ,  is non-frequent if 1 < .

Proof: Because the database is sorted according to the 

k-minimum subsequences, it is not possible for  to appear 

below the -th position when  is smaller than .
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Moreover, all the k-minimum subsequences that appear 

below the -th position are larger than . In other words, 

only the customer sequences above the -th position may 

contain . In this case, the support of  must be at most -1

and therefore  cannot be frequent. 

Note that Lemma 2.1 and Lemma 2.2 were applied in 

Example 1.1 and Example 1.2, respectively. 

After the comparison between 1 and  is done, we have 

to generate the conditional k-minimum subsequence of each 

customer sequence whose k-minimum subsequence is equal 

to 1. As the two cases discussed in Section 1.2, we define 

the conditional k-minimum subsequence as follows: 

Definition 2.5 Conditional k-minimum subsequence 

A sequence k is the conditional k-minimum subsequence of 

A if both the following conditions hold: 

(a) k is a k-sequence and a subsequence of A

(b) , which is a k-sequence and a subsequence of A, 

if 1= , < k ; otherwise, k

Note that the generation of conditional k-minimum 

subsequences has been illustrated in Section 1.2. 

3. The DISC-all algorithm 

In this section, we present the DISC-all algorithm that 

combines four mining strategies to efficiently find all the 

frequent sequences. The DISC-all algorithm is mainly based 

on the database partitioning and DISC strategies. At first, 

we scan the database to divide the customer sequences into 

partitions by their minimum 1-sequences such that the 

partitions can be ordered according to the minimum 

1-sequences they have. These partitions are called the 

first-level partitions. During the partitioning, we can find all 

the frequent 1-sequences. For each first-level partition, we 

regard its minimum 1-sequence as the prefix in the 

PrefixSpan algorithm to find the frequent 2-sequences in it. 

For each customer sequence in the first-level partition, we 

remove non-frequent 1-sequences and non-frequent 

2-sequences to generate a shorter customer sequence. Note 

that the minimum 1-sequence of this partition must not be 

removed. After that, we divide the reduced customer 

sequences into partitions by its 2-minimum sequence. These 

partitions are called the second-level partitions. For each 

second-level partition, we can also find the frequent 

3-sequences in it. The above scheme is named multi-level

partitioning, where the number of levels should be adaptive 

and depends on the tradeoff between overheads and profits 

brought from partitioning. In this paper, we adopt the 

two-level partitioning scheme for the ease of presentation. 

For each second-level partition, the DISC-all algorithm 

iteratively generates the k-sorted databases where k is larger 

than 3. Given a k-sorted database, the frequent k-sequences 

can be generated by the DISC strategy. After that, each 

customer sequence of the second-level partition is 

reassigned to another second-level partition by the next 

2-minimum sequence. When all the second-level partitions 

under a first-level partition have been processed, each 

customer sequence of the first-level partition is also 

reassigned to another first-level partition by the next 

minimum 1-sequence. Note that the other two strategies are 

also incorporated into the DISC-all algorithm. For example, 

the removal of non-frequent 2-sequences before generating 

the second-level partitions is based on both the strategies of 

candidate sequence pruning and customer sequence 

reducing. For described above, the DISC-all algorithm uses 

a multi-level partitioning scheme to find the frequent 

sequences with lengths smaller than 4 and adopt the DISC 

strategy to find the other frequent sequences. As the 

framework shown in Figure 1 indicates, the generation of 

partitions is executed in the breadth-first order, i.e. all the 

first-level partitions and then all the second-level partitions. 

However, finding frequent sequences from these partitions 

is in the depth-first order, i.e. the first-level partition 1, the 

second-level partition 1, the second-level partition 2, and so 

on. In the following sections, we will introduce the proposed 

techniques used in these two components, i.e. multi-level 

partitioning and direct sequence comparison, respectively. 

Frequent 1-sequences

The original
database

First-level
partition 1

First-level
partition 2

First-level
partition N

Second-level
partition M

Second-level
partition 1

Second-level
partition 2

4-sorted
database

k-sorted
database

Partitioning DSC

Frequent 2-sequences
Frequent 3- sequences

Frequent k-sequences

Frequent 4- sequences

Frequent 1-sequences

The original
database

First-level
partition 1

First-level
partition 2

First-level
partition N

Second-level
partition M

Second-level
partition 1

Second-level
partition 2

4-sorted
database

k-sorted
database

Partitioning DSC

Frequent 2-sequences
Frequent 3- sequences

Frequent k-sequences

Frequent 4- sequences

Figure 1: The framework of the DISC-all algorithm 

3.1. Multi-level partitioning 

The input of the DISC-all algorithm includes a database 

of customer sequences and , while the output is the set of 

all the frequent sequences. The DISC-all algorithm based on 

two-level partitioning is shown in Figure 2. The first step 

finds all the frequent 1-sequences and generates the 

first-level partitions by scanning the original database once. 

To find all the frequent 1-sequences, we simply use an array 

to accumulate the count of each 1-sequence during the 

database scan. In the meantime, for each customer 

sequence, we also find the minimum 1-sequence and keep 

the leftmost position that it appears in the customer 

sequence. This position is called the minimum point.

Finally, we classify each customer sequence into a partition 

according to its minimum 1-sequence. We call the partition 

with the minimum 1-sequence  the <( )>-partition.

Input: A sequence database DB, 
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Output: A set of all the frequent sequences 

1. Scan DB once to do: 

 (a) Find all the frequent 1-sequences 

 (b) Generate first-level partitions by minimum 1-sequences 

2. For each first-level partition FP to do: 

 2.1 If the minimum 1-sequence is frequent, 

  2.1.1 Find all the frequent 2-sequences in FP 

  2.1.2 Scan FP once again to do: 

   (a) Removing non-frequent 1-sequences/2-sequences 

   (b) Generate the second-level partitions under FP 

  2.1.3 For each second-level partition SP to do: 

   2.1.3.1 Find all the frequent 3-sequences in SP 

   2.1.3.2 Let k=4, Repeat 

    (a) Generated the k-sorted database of SP 

    (b) Find all the frequent k-sequences 

    (c) Let k=k+1 

    Until (size of SP < ) or (no frequent (k-1)-sequence) 

   2.1.3.3 Reassign customer sequences from SP to others 

 2.2 Reassign customer sequences from FP to others 

Figure 2: The DISC-all algorithm 
The second step of the DISC-all algorithm processes 

each of the first-level partitions in the alphabetic order of the 

minimum 1-sequences. Given a <( )>-partition, if  is 

frequent, Step 2.1 will discover all the frequent sequences 

that contain  as the first item. Therefore, only the items to 

the right of the minimum point have to be processed. The 

subsequences of a customer sequence may contribute to the 

support counts of different frequent sequences in more than 

one first-level partition. Therefore, in Step 2.2, for each 

customer sequence in the first-level partition that has been 

processed, we further find the next minimum 1-sequence in 

it and reclassify it into the other first-level partitions. 

Example 3.1. Consider the example database in Table 6 and 

let  be 3. The first-level partition of each customer 

sequence is shown in the third column of Table 6 and all the 

1-sequences except <(d)> are frequent. For instance, the 

first seven customer sequences belong to <(a)>-partition 

because their minimum 1-sequences are a. As a result, 

initially there are four partitions with disjoint sets of 

customer sequences. 

In the second step, <(a)>-partition will be processed first 

to find all the frequent sequences that contain a as the first 

item, e.g. <(a, e)> and <(a)(g, h)>. After that, we find the 

next minimum 1-sequence in each of the seven customer 

sequences and then reclassify them into the other first-level 

partitions, respectively. For instance, CID 1 and 2 are 

respectively reassigned into <(c)>-partition and 

<(b)>-partition as shown in the rightmost column of Table 

6. Note that the reassignments of customer sequences may 

lead to the creation of a new partition (e.g. <(c)>-partition) 

and the removal of a customer sequence when its minimum 

point is at its end (e.g. CID 5). 

Table 6: Database and first-level partitions 

CID Customer Sequences Initial 

Partitions 

After processing 

<(a)>-partition 

1 (a, d)(d)(a, g, h)(c) <(a)>-partition <(c)>-partition 

2 (b)(a)(f)(a, c, e, g) <(a)>-partition <(b)>-partition 

3 (a, f, g)(a, e, g, h)(c, 

g, h) 

<(a)>-partition <(c)>-partition 

4 (f)(a, c, f)(a, c, e, g, h) <(a)>-partition <(c)>-partition 

5 (a, g) <(a)>-partition Removed 

6 (a, f)(a, e, g, h) <(a)>-partition <(e)>-partition 

7 (a, b, g)(a, e, g)(g, h) <(a)>-partition <(b)>-partition 

8 (b, f)(b, e)(e, f, h) <(b)>-partition <(b)>-partition 

9 (d, f)(d, f, g, h) <(d)>-partition <(d)>-partition 

10 (b, f, g)(c, e, h) <(b)>-partition <(b)>-partition 

11 (e, g)(f)(e, f) <(e)>-partition <(e)>-partition 

In Step 2.1, given a <( )>-partition where  is frequent, 

we scan the partition once to discover all the frequent 

2-seuqneces via a mechanism called the counting array. In 

the <( )>-partition, item  is regarded as the common prefix 

of all the frequent 2-sequences to be found from it. 

Therefore, the counting array only reserves two entries for 

each item x to respectively keep the support counts of the 

2-sequences in the forms of <( )(x)> and <( x)>. 

Moreover, each entry is associated with two values, i.e. the 

support count and the last CID when the support count is 

updated. The CID information can avoid counting the 

repetitions of a 2-sequence in the same customer sequence. 

In this way, all the support counts of 2-sequences can be 

correctly computed in only one scan. 

After that, we reduce the length of each customer 

sequence by removing all the non-frequent 1-sequences and 

non-frequent 2-sequences. We keep the set of reduced 

customer sequences as another copy. Given a customer 

sequence in the <( )>-partition, the following two 

conditions are used to determine whether an item to the right 

of the minimum point can be removed or not: 

1. The transaction having x contains .

2. The minimum point is to the left of the transaction having 

x.

When the condition 1 does not hold, item x can be 

removed if <( )(x)> is not frequent. When the condition 1 

holds but condition 2 does not hold, item x can be removed 

if <( x)> is not frequent. If both the conditions hold, item x 

can be removed only if both <( )(x)> and <( x)> are not 

frequent. All the occurrences of  cannot be removed 

because they may be involved in the support counting for 

the frequent sequences with larger lengths. In the meantime, 

the reduced customer sequences are classified into the 

second-level partitions according to their 2-minimum 

sequences. 

Example 3.2. Take the <(a)>-partition in Table 6 as an 

example. Because <(a)> is frequent, we use the counting 

array to accumulate the support counts of 2-sequences 

during one scan. Figure 3 shows the results of the counting 
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array, where (x) and (_x) refer to the two forms <(a)(x)> and 

<(ax)>, respectively. Only <(a)(b)>, <(a)(d)>, <(a)(f)>, 

<(ab)>, <(ac)>, and <(ad)> are not frequent. Finally, the 

customer sequences can be reduced by removing the 

non-frequent sequences except item a. As shown in Table 7, 

item c in CID 2 is not removed because <(a)(c)> is frequent. 

Moreover, the customer sequences with lengths smaller 

than 3, e.g. CID 5, is also removed from the reduced 

partition. 

 (a) (b) (c) (d) (e) (f) (g) (h) 

Support count 6 0 4 1 5 1 6 5 

Last CID 7 0 4 1 7 2 7 7 

 (_a) (_b) (_c) (_d) (_e) (_f) (_g) (_h)

Support count 0 1 2 1 5 3 7 5 

Last CID 0 7 4 1 7 6 7 7 

Figure 3: The count array of <(a)>-partition 
In Step 2.1.3, with the counting array, we also find the 

frequent 3-sequences in each second-level partition in one 

scan. After that, we apply the DISC strategy to find the 

frequent k-sequences iteratively. Finally, each customer 

sequence is reassigned to another second-level partition by 

the next 2-minimum sequence. In the next section, we will 

present the core of the DISC-all algorithm, i.e. the 

techniques for direct sequence comparison. 

Table 7: <(a)>-partition with reduced sequences 
CID Customer Sequences 

1 (a)(a, g, h)(c) 

2 (b)(a)(a, c, e, g) 

3 (a, f, g)(a, e, g, h)(c, g, h) 

4 (f)(a, f)(a, c, e, g, h) 

6 (a, f)(a, e, g, h) 

7 (a, g)(a, e, g)(g, h) 

3.2. Direct sequence comparison 

To find all the frequent sequences in a second-level 

partition, we adopt the bottom-up approach to start at the 

discovery of frequent 4-sequences and repeat it until no 

more frequent sequences can be found as indicated by Step 

2.1.3.2 in Figure 2. The frequent k-sequence discovery
procedure consists of two stages as shown in Figure 4. The 

first stage finds the k-minimum subsequence of each 

customer sequence to construct the k-sorted database. The 

second stage repeats three steps, i.e. direct sequence 

comparison, generation of conditional k-minimum 

subsequences, and the re-sorting of k-sorted database. Note 

that the customer sequences without conditional 

k-minimum subsequences will be removed from the 

k-sorted database. Therefore, all the frequent k-sequences in 

this partition are found when the size of the k-sorted 

database is smaller than .

Input: < 1 2>-partition, , k 

Output: All the frequent k-sequences with prefix < 1 2>

1. Scan the < 1 2>-partition once to do: 

 (a) Generate the k-minimum subsequence for each 

customer sequence 
 (b) Construct the k-sorted database SD 

2. While (the size of SD ) do: 

 2.1 Check candidate k-sequence by condition k-sequence 

 2.2 Generate the conditional k-minimum subsequences 

 2.3 Resort SD by the conditional k-minimum subsequences 

Figure 4: Frequent k-sequence discovery 
We propose an algorithm named Apriori-KMS that can 

generate the k-minimum subsequences in Step 1(a) and a 

similar one called Apriori-CKMS that can generate the 

conditional k-minimum subsequences in Step 2.2. Step 2.1 

is based on the two lemmas described in Section 2, 

indicating that the candidate k-sequence is frequent if it is 

the same as the condition k-sequence. In this way, we can 

determine whether the candidate k-sequence is frequent by 

direct sequence comparison. The sorting methods required 

in Step 1(b) and 2.3 is based on a mechanism called the 

locative AVL-Tree, which can provide efficient sorting and 

retrieval. In addition, we also design the bi-level version of 

the DISC-all algorithm, which discovers all the frequent 

k-sequences and frequent (k+1)-sequences in only one scan 

of the k-sorted database. 

For the ease of presentation, we call the prefix of a 

sequence with length k the k-prefix. For instance, the 

3-prefix of <(a)(a, g, h)(c)> is <(a)(a, g)>. According to the 

anti-monotone property, the k-minimum subsequence 

cannot be frequent if its (k-1)-prefix is not frequent. 

Therefore, we utilize the frequent (k-1)-sequences for 

generating the k-minimum subsequences to skip the 

k-sequence whose (k-1)-prefix is not frequent. When a 

k-sorted database is processed, all the frequent 

(k-1)-sequences are linked together in the ascending order 

and called the (k-1)-sorted list. The Apriori-KMS algorithm 

is shown in Figure 5. 

At first, the Apriori-KMS algorithm selects the frequent 

(k-1)-sequences from the (k-1)-sorted list one by one, where 

the smallest one is chosen first. Let the chosen frequent 

(k-1)-sequence be F. In Step 4, the customer sequence S is 

scanned to find the leftmost match of F and record the 

position on S that matches the last item of F, called the 

matching point. When the matching point is not at the end of 

S, the minimum of the items to the right of the matching 

point is found and added to the end of F to form the 

k-minimum subsequence of S. If no match is found, the next 

frequent (k-1)-sequence is selected for another iteration. 

After the k-minimum subsequence is found, each customer 

sequence is associated with a pointer named apriori pointer
that refers to a node of the (k-1)-sorted list, whose frequent 

(k-1)-sequence is the (k-1)-prefix of the k-minimum 

subsequence. This piece of information will be used in the 

Apriori-CKMS algorithm. 

Input: A customer sequence S 

Output: The k-minimum subsequence of S 

1. P=the first node of the (k-1)-sorted list 
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2. While (P NULL) Do { 

3. F=the frequent (k-1)-sequence of P 

4. Find the leftmost match of F on S 

5. M=the matching position of Fk-1 on S 

6. If (F  S) and (M  End of S) { 

7.  Z=minimum of the items to the right of SM

8.  Return the concatenated sequence <FZ>} 

9. Else P=the next node in the (k-1)-sorted list} 

10. Return with no result 

Figure 5: The Apriori-KMS Algorithm 

Example 3.3. Let  be 3. Take the <(a)(a)>-partition and its 

3-sorted list in Table 8 as an example. At the beginning, we 

pick up <(a)(a, e)> to scan CID 1 but no match is found. 

After that, we scan CID 1 again and find a match of <(a)(a, 

g)>. The matching point is 3 and therefore item c is selected 

to generate the 4-minimum sequence <(a)(a, g)(c)>. A 

complete 4-sorted database is shown in Table 9, where CID 

1 is associated with the apriori pointer referring to the 

frequent 3-sequence <(a)(a, g)>. 

Table 8: <(a)(a)>-partition and its 3-sorted list 
CID Customer Sequences  The 3-sorted List 

1 (a)(a, g, h)(c)  No Frequent 3-sequences

2 (b)(a)(a, c, e, g)  1 (a)(a, e) 

3 (a, f, g)(a, e, g, h)(c, g, h)  2 (a)(a, g) 

4 (f)(a, f)(a, c, e, g, h) 3 (a)(a, h) 

6 (a, f)(a, e, g, h)   

7 (a, g)(a, e, g)(g, h) 

Table 9: 4-sorted database of <(a)(a)>-partition 
CID 4-minimum 

Subsequences 

Customer Sequences Apriori 

Pointer 

3 (a)(a, e)(c) (a, f, g)(a, e, g, h)(c, g, h) 1 

2 (a)(a, e, g) (b)(a)(a, c, e, g) 1 

4 (a)(a, e, g) (f)(a, f)(a, c, e, g, h) 1 

6 (a)(a, e, g) (a, f)(a, e, g, h) 1 

7 (a)(a, e, g) (a, g)(a, e, g)(g, h) 1 

1 (a)(a, g)(c) (a)(a, g, h)(c) 2 

Given a customer sequence S and the condition 

k-sequence , the goal of the Apriori-CKMS algorithm is 

to efficiently find the conditional k-minimum subsequence 

from S. By Definition 2.5, if the candidate k-minimum 

subsequence is frequent, the conditional k-minimum 

subsequence has to be greater than . Otherwise, the 

conditional k-minimum subsequence should be greater than 

or equal to . Therefore, the Apriori-CKMS algorithm 

needs a parameter  to indicate whether the conditional 

k-minimum subsequence can be equal to  or not. Based on 

the apriori pointer, the Apriori-CKMS algorithm as shown 

in Figure 6 skips the k-sequence whose (k-1)-prefix is not 

frequent. 

Input: customer sequence S and its apriori pointer P, 

condition k-sequence , operation indicator 

Output: The conditional k-minimum subsequence of S 

under the constraints  and 
1. X=(k-1)-prefix of , Y=the last item of ,

2. If (P=NULL) Return with no result 

3. F=the frequent (k-1)-sequence of P 

4. While (F<X) Do { 

5. P=the next node in the (k-1)-sorted list 

6. If (P=NULL) Return with no result 

7. F=the frequent (k-1)-sequence of P} 

8. While (P NULL) { 

9. F=the frequent (k-1)-sequence pointed to by P 

10. Find the leftmost match of F on S 

11. M=the matching position of Fk-1 on S 

12. If (F  S) and (M  End of S) { 

13.  If (F X) Z=minimum of the items to the right of SM

14.  Else Z=minimum of Si, Si, (M < i) and (Si  Y) 

15.  If (Z is found) Return <FZ>} 

16. P=the next node in the (k-1)-sorted list} 

17. Return with no result 

Figure 6: The Apriori-CKMS algorithm
The difference between this algorithm and the 

Apriori-KMS algorithm is that the conditional k-minimum 

subsequence  must satisfy the constraint “ ”, where 

 is either ‘>’ or ‘ ’. To meet the requirement, from Steps 

4~7, we select the smallest frequent (k-1)-sequence from the 

ones in the (k-1)-sorted list, which are larger than or equal to 

the (k-1)-prefix of . Note that the apriori pointer 

associated with each customer sequence can speed up this 

selection process. Let the chosen frequent (k-1)-sequence be 

F. After that, we follow the same steps of the Apriori-KMS 

algorithm to find the matching point. When the matching 

point is not at the end of S, the following cases are 

considered: 

1. When F does not equal the (k-1)-prefix of , we follow 

the same steps of the Apriori-KMS algorithm to compose 

the conditional k-minimum subsequence. 

2. Otherwise, the constraint is required to be checked as we 

search the minimum of the items to the right of the 

matching point. If such a minimum does not exist, the 

next frequent (k-1)-sequence is selected for the following 

iteration. 

Example 3.4. From Table 9, by Lemma 2.2, the <(a)(a, 

e)(c)> is not frequent. By Definition 2.5, the constraint used 

in the Apriori-CKMS algorithm includes the condition 

4-sequence <(a)(a, e, g)> and an operation indicator ‘ ’. 

Moreover, the apriori pointer of CID 3 refers to the frequent 

3-sequence <(a)(a, e)>, which equals the 3-prefix of 

condition 4-sequence. Therefore, Steps 4~7 can be skipped. 

In Step 10, the matching point is 5 and the minimum of the 

items that satisfy the constraint is item g in the second 

transaction. In this way, the conditional k-minimum 

subsequence <(a)(a, e, g)> is obtained. The 4-sorted 

database after re-sorting CID 3 is shown in Table 10. 
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Table 10: Table 9 after re-sorting CID 3 
CID 4-minimum 

Subsequences 

Customer Sequences Apriori 

Pointer 

2 (a)(a, e, g) (b)(a)(a, c, e, g) 1 

4 (a)(a, e, g) (f)(a, f)(a, c, e, g, h) 1 

6 (a)(a, e, g) (a, f)(a, e, g, h) 1 

7 (a)(a, e, g) (a, g)(a, e, g)(g, h) 1 

3 (a)(a, e, g) (a, f, g)(a, e, g, h)(c, g, h) 1 

1 (a)(a, g)(c) (a)(a, g, h)(c) 2 

For the efficient construction and retrieval of the k-sorted 

database, we propose the locative AVL-tree such that the 

condition k-sequence can be quickly located. The locative 

AVL tree focuses on two issues, i.e. how to find the 

condition k-sequence by the access key and how to maintain 

the access key. For the first issue, we propose an algorithm 

that can quickly find the node corresponding to , indicating 

the location of condition k-sequence. The details can be 

found in [4]. To deal with the second issue, we modify the 

adjustments for the AVL-tree balance, which can be found 

in [14]. 

In a locative AVL-tree, when the candidate k-sequence is 

found frequent, all the customer sequences contained in the 

corresponding node can be regarded as a virtual partition.

From this virtual partition, each frequent (k+1)-sequence 

whose k-prefix is the candidate k-sequence can be derived. 

Therefore, we employ the counting-array similar to the one 

used in Section 3.1 to compute the support count of each 

(k+1)-sequence whose k-prefix is the candidate k-sequence. 

Based on the anti-monotone property, all the frequent 

(k+1)-sequences can be discovered from these virtual 

partitions. Therefore, we can find the frequent sequences 

with lengths k and k+1 via only one call to the frequent 

k-sequence discovery procedure. This technique is named 

bi-level and used as the version of our algorithm for 

experiments. 

Example 3.5. Following Example 3.3, by Lemma 2.1, 

<(a)(a, e, g)> is a frequent 4-sequence. Moreover, CID 2, 3 

and 4 constitute a virtual partition that can be used to 

discover the frequent (k+1)-sequence whose k-prefix is 

<(a)(a, e, g)>. During running the Apriori-CKMS algorithm 

to find the conditional 4-minimum sequences, a 

counting-array is also used to accumulate the support count 

of each 5-sequence whose 4-prefix is <(a)(a, e, g)>. Figure 7 

shows the results after three customer sequences have been 

processed, indicating that <(a)(a, e, g, h)> is the only one 

frequent 5-sequence with the 4-prefix <(a)(a, e, g)>. 

 (a) (b) (c) (d) (e) (f) (g) (h) 

Support count 0 0 1 0 0 0 1 1 

Last CID 0 0 3 0 0 0 3 3 

 (_a) (_b) (_c) (_d) (_e) (_f) (_g) (_h)

Support count 0 0 0 0 0 0 0 3 

Last CID 0 0 0 0 0 0 0 3 

Figure 7: Counting array for the bi-level version 

4. Performance Evaluation 

The experiments are made upon the Intel Pentium 4 CPU 

2.8GHz with 512 MB main memory and Microsoft 

Windows XP Professional. The databases used in our 

experiments are synthesized via the IBM data generator [1] 

with the version dated July 22, 1997. In parameter setting, 

we adopt most of the default values for the command 

options provided by the data generator, except the 

followings: 

Table 11: Parameter setting of self-tuned options 
Command 

Option 

Description Value 

Ncust Number of customers 50K~500K

Slen Average number of transactions per 

customer 

10

Tlen Average number of items per 

transaction 

2.5 

nitems Number of different items 1K 

seq.patlen Average length of maximal pattern 4 

4.1. Performance evaluation of DISC-all 

We compare the DISC-all algorithm with the PrefixSpan 

algorithm [9] in efficiency. In addition to the basic version 

of the PrefixSpan algorithm, we also consider the version 

based on pseudo-projection named Pseudo in the 

comparisons. The Pseudo algorithm employs a mechanism 

to link together all the customer sequences in a projection 

database. This mechanism can reduce the costs on 

projecting databases when the projected database can fit 

into the main memory. Note that we adopt the bi-level 

version of our algorithm in all the experiments. 

Based on the parameter setting in Table 11, we generate a 

series of databases whose sizes range from 50K to 500K. 

The parameters except the database size are the same as the 

setting used in the IBM data generator. Figure 8 shows the 

experimental results under different numbers of customer 

sequences. The DISC-all algorithm outperforms the others 

for all these databases even when the minimum support 

threshold is set to 0.0025. Moreover, the improvement of 

the DISC-all algorithm enlarges as the database size 

increases. The reason why the PrefixSpan algorithm does 

not adapt to large databases is because the number of 

projections increases as the growth of database size. By 

contrast, the DISC-all algorithm can skip more non-frequent 

sequences during direct sequence comparison because 

increases as the growth of database size. 
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Figure 8: Comparisons on database sizes 
In the second experiment, based on the parameter setting 

in [8] where the slen, tlen and seq.patlen are all set to 8, we 

generate a database with 10K customer sequences. Figure 9 

shows the experimental results under different settings of 

’s, where the minimum support threshold is the proportion 

of  to the database size.  
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Figure 9: Comparisons on different ’s 
Obviously, the DISC-all algorithm is the best of the three 

because it always spends the least amount of processing 

time when the minimum support threshold ranging from 

0.02 to 0.0025. When the minimum support threshold is set 

to 0.0025, we observe that there are more than 100K 

frequent sequences and the length of the maximal frequent 

sequences is at least 14. 

4.2. Discussions on multi-level partitioning 

The multi-level partitioning scheme is good at reducing 

the number of customer sequences such that the 

unnecessary decompositions of customer sequences can be 

eliminated. Given a partition Q, let NQ be the number of its 

child partitions. To evaluate the effects of partitioning, for 

each partition, we estimate the average ratio of the size of its 

child partition to its partition size, which is called the 

non-reduction rate and denoted by NRR, as follow: 

2,
Size

Size

N

1
NRR

Qofpartitionchildaisp Q

p

Q

Q

Given a < >-partition where  is k-sequence, the 

simplest way to compute the NRR of this partition is to 

consider the support count of each frequent (k+1)-sequence 

discovered in this partition as the size of its child partition. 

We define the average NRR as the average of the NRR’s for 

all the partitions in the same level under the multi-level 

partitioning scheme. Table 12 shows the average NRR of 

each level under different minimum support thresholds and 

the database size 10K. Obviously, each of the first-level 

partitions is much smaller than the original database 

according to its average NRR. However, the partitions at 

different levels may have various effects on the NRR. For 

example, when the minimum support threshold is 0.005, the 

average NRR of the second-level partitions is 0.64, which is 

much higher than the one of the first-level partitions (0.11) 

but much smaller than the one of the third-level partitions 

(0.9). Based on the multi-level partitioning scheme, the 

partition size is never smaller than . As the partitioning 

goes to a deeper level, the partition size is getting smaller 

and close to . Therefore, the NRR of a partition tends to 

become larger at the deeper level. 

Table 12: Average NRR under different ’s
Average

NRR
Original 1 2 3 4 5 6 7 8 

0.02 0.0027 0.18 - - - - - - - 

0.0175 0.0026 0.18 - - - - - - - 

0.015 0.0025 0.16 - - - - - - - 

0.0125 0.0024 0.15 - - - - - - - 

0.01 0.0022 0.14 0.92 - - - - - - 

0.0075 0.002 0.12 0.9 0.98 0.98 - - - - 

0.005 0.0019 0.11 0.64 0.9 0.94 0.97 0.99 - - 

0.0025 0.0018 0.08 0.43 0.83 0.85 0.85 0.86 0.87 0.90

In Table 13, for the database size 10K, the DISC-all 

algorithm can achieve the most significant improvement 

when the minimum support threshold is 0.0075. By contrast 

with Table 12, we find that both the NRR of the original 

database and the average NRR of the first-level partitions 

are small (0.002 and 0.12). Moreover, all the average NRR’s 

of the partitions at the other levels are large (0.9, 0.98, and 

0.98). From the fact that the DISC-all algorithm statically 

replaces the database partitioning strategy with the DISC 

strategy at level 2, we conclude that the database 

partitioning strategy prefers the partition with a low NRR. 

Considering the extreme case, if the NRR of a partition is 1, 

all the child partitions have the same sizes as it has. 

Therefore, the overhead is against the benefit under the 

database partitioning strategy. 

From the above observation, the divide between the 

database partitioning strategy and the DISC strategy is 

important to the performance of the DISC-all algorithm. 

Therefore, we further develop a dynamic version of the 

DISC-all algorithm, called the Dynamic DISC-all
algorithm, which can adapt the divide between the database 

partitioning strategy and DISC strategy to the growth of 

NRR. Initially, this algorithm repeatedly adopted the 

database partitioning strategy. When the NRR of a partition 
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becomes larger than a predefined threshold, the DISC 

strategy is used to find all the remaining frequent sequences 

in this partition. The Dynamic DISC-all algorithm is 

attached in the Appendix. 

Table 13: The ratio of Pseudo to DISC-all 
Pseudo DISC-all  Pseudo/DISC-all 

0.0025 38.234 10.656 3.588026

0.005 17.015 2.203 7.723559

0.0075 10.235 1.234 8.294165

0.01 7.375 0.906 8.140177

0.0125 5.969 0.766 7.792428

0.015 5.234 0.703 7.445235

0.0175 4.672 0.671 6.962742

0.02 4.282 0.64 6.690625

4.3. Performance evaluation of Dynamic DISC-all 

In this experiment, we adopt most of the default values 

provided by the data generator, except 50K customer 

sequences and 1000 items. Let the average number of 

transactions per customer sequence in the entire database be 

denoted as . Moreover, we generate a series of databases 

whose ’s range from 10 to 40. The minimum support 

threshold is set to 0.005. Table 14 shows the average NRR’s 

of each level during processing these databases. 

From Table 14, we observe that the average NRR of a 

partition in each level tends to decrease as the growth of .

The reason is as follows. The growth of  may lead to the 

enlargement of both the partition and its child partition, 

which will result in the change of the NRR of this partition. 

When the increase of the partition is much larger than most 

of the increases of its child partitions, the NRR of this 

partition will be decreased. 

Table 14: Average NRR under different ’s
Average NRR Original 1 2 3 4 5 6 

10 0.0072 0.1 0.83 0.83 - - - 

15 0.0096 0.09 0.66 0.81 0.87 0.99 - 

20 0.0114 0.09 0.56 0.81 0.83 0.98 - 

25 0.0129 0.1 0.26 0.75 0.85 0.85 0.82 

30 0.014 0.11 0.2 0.74 0.82 0.88 0.80 

35 0.0151 0.11 0.2 0.71 0.78 0.84 0.91 

40 0.016 0.12 0.2 0.52 0.76 0.78 0.77 

Figure 10 shows the process time of different approaches 

for these databases. Obviously, the Dynamic DISC-all 

algorithm outperforms all the others under different average 

numbers of transactions per customer sequence. Moreover, 

the DISC-all algorithm also outperforms the other two 

approaches at all cases except for  40. The reason why the 

DISC-all algorithm becomes worse than the Pseudo 

algorithm when  is 40, can be observed as follows. As 

described in Sec. 4.2, the multi-level database partitioning 

strategy prefers the partition with a low NRR. However, in 

Table 14, for  40, the average NRR at level 2 and 3 are 0.2 

and 0.52 respectively. By contrast with the dynamic version, 

the DISC-all algorithm statically replaces the database 

partitioning strategy with the DISC strategy at level 2. 

Therefore, it does not take full advantage of the database 

partitioning at the levels deeper than 2 and the performance 

is worsened when  is 40.
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Figure 10: Comparisons on different ’s
As a summary, the database partitioning strategy is good 

for the partition with a small NRR, while its overhead is 

against the benefit when the NRR of a partition is large. In 

the latter case, the DISC strategy, which is not influenced by 

the NRR, can avoid unnecessary decompositions of 

customer sequences. Therefore, the Dynamic DISC-all 

algorithm performs much better than the DISC-all algorithm 

when the NRR is varied. 

5. Conclusion 

In this paper, we propose the DISC strategy that reduces 

candidate sequences without using the anti-monotone 

property. Moreover, we design the DISC-all algorithm that 

combines it with the other strategies used in the pervious 

work to find frequent sequences in large databases. 

Furthermore, we develop the Dynamic DISC-all algorithm 

that dynamically combines the multi-level partitioning 

scheme with the procedure of frequent sequence discovery. 

Finally, we make experiments and compare our algorithm 

with the PrefixSpan algorithm to reveal the usefulness of the 

DISC strategy and the characteristic of the database 

partitioning strategy. The following summarizes the main 

contributions of this paper: 

1. We propose a new strategy for mining sequential patterns 

and prove its usefulness. 

2. We design efficient algorithms to meet the requirements 

of the proposed strategy. 

3. We classify the related works and summarize their 

strategies.

4. We design an algorithm that takes advantages of all the 

strategies.

5. We analyze the partition strategy to design the dynamic 

version of our algorithm and achieve a much better 

performance. 
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The DISC strategy is not limited by the anti-monotone 

property and therefore it can be applied to many of the real 

world applications. The so-called weighting applications are 

very common and important in the real world. For example, 

when finding the traversal patterns in the WWW, different 

pages may have a variety of importance, e.g. page weights. 

Moreover, in DNA sequence analysis, some genes may be 

more important than the others in a particular disease. For 

both the scenarios, a pattern depends on not only the number 

of its occurrences but also its weight, defined by a specific 

application. It is challenging and interesting to apply the 

DISC strategy to such kinds of weighting applications. 
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Appendix

The Dynamic DISC-all Algorithm 

Input: A < >-partition X, where the length of  is k and the 

maximum NRR threshold 

Output: All the frequent sequences in the < >-partition 

1. Scan X once to find all the frequent (k+1)-sequences with 

prefix < >

2. Let NRRX=NRR of X 

3. If (NRRX < )

 (a) Generate the set of partitions at the next level SP

 (b) For each partition in SP, call Dynamic DISC-all
4. Else 

 Let k=k+2, Repeat 

 (a) Generated the k-sorted database of X 

 (b) Call Frequent k-sequence discovery in Figure 4  

 (c) Let k=k+1 

 Until (size of X < ) or (no frequent (k-1)-sequence) 

Note: for the original database, =NULL and k=0. 
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