
Systematic Data Selection
to Mine Concept-Drifting Data Streams

Wei Fan
IBM T.J.Watson Research

19 Skyline Drive
Hawthorne, NY 10532, USA

weifan@us.ibm.com

ABSTRACT
One major problem of existing methods to mine data streams is that
it makes ad hoc choices to combine most recent data with some
amount of old data to search the new hypothesis. The assumption
is that the additional old data always helps produce a more accurate
hypothesis than using the most recent data only. We first criticize
this notion and point out that using old data blindly is not better than
“gambling”; in other words, it helps increase the accuracy only if
we are “lucky.” We discuss and analyze the situations where old
data will help and what kind of old data will help. The practical
problem on choosing the right example from old data is due to the
formidable cost to compare different possibilities and models. This
problem will go away if we have an algorithm that is extremely
efficient to compare all sensible choices with little extra cost. Based
on this observation, we propose a simple, efficient and accurate
cross-validation decision tree ensemble method.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Min-
ing

General Terms
Algorithms

Keywords
data streams, concept-drift, decision trees

1. INTRODUCTION
One of the recent challenges facing traditional data mining meth-

ods is to handle real-time production systems that produce large
amount of data continuously at unprecedented rate and with evolv-
ing patterns. Traditionally, due to limitation of storage and practi-
tioner’s ability to mine huge amount of data, it is a common prac-
tice to mine a subset of data at preset frequency. However, these
solutions have been shown to be ineffective due to possibly over-
simplified model as a result of sub-sampling as well as dynamically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22-25, 2004, Seattle, Washington USA
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

unpredictable evolving pattern of the production data. Knowledge
discovery on data streams has become a research topic of growing
interest. Much work has been done on modeling [Babcock et al.,
2002], querying [Babu and Widom, 2001, Gao and Wang, 2002,
Greenwald and Khanna, 2001], classification [Domingos and Hul-
ten, 2000, Hulten et al., 2001, Street and Kim, 2001, Wang et al.,
2003, Fan et al., 2004], regression analysis [Chen et al., 2002],
clustering [Guha et al., 2000] as well as visualization [Aggarwal,
2003]. The fundamental problem we need to solve is the following:
given an infinite amount of continuous measurements, how do we
model them in order to capture possibly time-evolving trends and
patterns in the stream, compute the optimal model and make time
critical decisions?

At the present time, many existing methods to mine data streams
“blindly” reuse some amount of old data to combine with new data
to construct the models. The generally conceited reason on why
to use old data is the hope to improve the current model’s accu-
racy on the new data. There are mainly two approaches. One
approach assigns a decreasing weight to older examples. A sim-
pler approach always uses data from a fixed number of periods.
For example, in [Hulten et al., 2001], they refine a decision tree
by continuously incorporating new data from the data stream. In
order to handle concept-drifts, they have chosen to retire old exam-
ples at a preset “fixed rate” besides discarding and re-growing sub-
trees under a node. Since old data is discarded at a fixed rate (no
matter if they represent the changed concept or not), the learned
model is supported arbitrarily much more by the current snapshot
- a possibly very small amount of data. As a matter of fact, it is
shown in [Hulten et al., 2001] that the prediction error of the tree
rise quickly when the concept drift amplifies. Ideally, the predic-
tion error should not be correlated to the amount of concept drift.
In [Wang et al., 2003], they construct a weighted ensemble of clas-
sifiers. One classifier in the ensemble is trained from the most
recent data chunk, and the others are trained from some old data
chunks. Both the theorem and empirical analysis of [Wang et al.,
2003] conclude that when there is concept drift, from the “same”
data chunks (new and old), the weighted ensemble is more accu-
rate than a single classifier trained from exactly the same amount
of data. However, it didn’t draw any conclusion about the relative
accuracy of models trained from “different number of data chunks”
or different amount of old data. In other words, it still remains an
open problem whether it is more accurate to train from the new data
only or train from old data plus with some amount of old data (and
how much old data).

The unselective use of old data definitely helps improve model
accuracy if there is no conceptual change in the data stream and
new data stream is insufficient by itself. However, when there is no

128

Research Track Paper

conceptual change, there may not be any utility to re-learn a new
model unless the old model is trained from insufficient data. On
the other hand, when there is indeed conceptual change, i.e., the
underlying model in the new data stream is different from previ-
ous model, using older data unselectively is not better than gam-
bling. In this situation, using old data unselectively helps only if
the new concept and old concept still have some consistencies and
the amount of old data chosen arbitrarily just happen to be right.
The unrealistic approach would be to first know if the data has con-
cept drift and if the data is sufficient by itself. Based on the com-
binations of whether there is concept drift and whether the data is
sufficient, we would decide the correct decisions. Detection meth-
ods for both concept drift and data sufficiency could be proposed,
but they could be wrong. Even if one is wrong, we will make the
wrong decision. More importantly, a requirement for stream min-
ing completely invalidate the need for sufficiency detection is that
even if the data is insufficient for learning, we still need to find a
model to best fit it.

All these problems will go away, if we can find an algorithm that
is extremely efficient in training; we apply this extremely efficient
approach on the data to compare all sensible choices using cross-
validation, systematically select data, and make the data “speak for
themselves.” These sensible candidates could include new model
trained from new data, model trained from new data combined with
carefully selected old data, old model updated with new data, and
old model itself. Besides comparing these choices, we also need
a statistically reliable method to carefully select old data whenever
necessary. The correct choice ought to be made by using cross-
validation instead of making some “data-blind” assumptions. The
basic framework proposed in this paper is based on this statistical
test. Its implementation is based on an efficient multiple decision
tree algorithm.

To solve the problem on how to systematically select old data to
mine concept-drifting data streams, we propose a cross-validation
decision tree ensemble approach. In the first step, the algorithm
detects all features with information gain. In the second step, its
builds multiple decision trees by randomly choosing from those
features with information gain and ignore the irrelevant features.
Discrete features can appear only once in a decision path, starting
from the root of the tree to the current node. Continuous features
can appear multiple times but with a different splitting point each
time this feature is chosen. Internal nodes of the tree keep class
distribution statistics. To classify an unknown instance, each deci-
sion tree outputs a membership probability (e.g, p(fraud|x) or the
probability that x is a fraud) computed at each leaf node level us-
ing the stored class distribution statistics. The probability outputs
of multiple decision trees on the same example are then averaged
as the final membership probability estimation. In order to make
an optimal decision, the estimated posterior probability and a given
loss function are used jointly in order to minimize the expected loss.
For example, under traditional 0-1 loss, if the averaged probability
p(fraud|x) > 0.5, the best prediction is to predict x as fraud.

We justify our claim that using old data unselectively is like gam-
bling by running on a synthetic dataset as well as credit card fraud
dataset. We evaluated the proposed cross-validation decision tree
ensemble and compared the results with some other models trained
with either new data only or new data plus some ad hoc amount of
old data.

2. ISSUES WITH DATA STREAM
There are two major issues with an incoming data stream, possi-

ble concept-drift and data insufficiency.

2.1 Concept Drift
Assume that y = f(x) is the underlying true model that we

aim to model. In order to do so, some number of training instances
are randomly sampled, {(x1, y1), . . . , (xn, yn)}. Most models are
deterministic, i.e., for the same example, f(x) produces the same
prediction at different time. Some models can also be stochastic;
in other words, for the same example, f(x) may produce different
class labels at the different times. For stochastic problems, the best
we can do is to predict the label that minimizes a given loss func-
tion. Since in most applications, we don’t actually know the true
model. We normally discuss the optimal hypothesis or a hypothe-
sis that minimizes a given loss function as the ultimate goal. A true
model can be stochastic, however, an optimal model is generally
deterministic.

We generally describe the training data of data streams as chunks
of labeled data at different time stamps. Si is the data received
at time stamp i and FOi(x) is its optimal model. Assume that
FOi−1(x) is the older optimal hypothesis at the previous time
stamp i−1. We say that there is concept drift from time stamp i−1
to time stamp i, if there are inconsistencies between FOi−1(x) and
FOi(x). Formally, “under the same loss function”, there exists x
such that FOi−1(x) �= FOi(x). If x is taken randomly from
the universe of valid examples, with probability τ , FOi−1(x) �=
FOi(x). We call τ the rate of concept change.

2.2 Data Sufficiency
There is no formal definition of data sufficiency. In statistical

sampling, we say that a data sample is sufficient if the observed
statistics, such as sample mean, sample total, and sample propor-
tion, have a variance smaller than predefined limits with high con-
fidence. For example, under normal distribution, 99.7% confidence
is at 3 times the standard variance interval. In practical terms of ma-
chine learning and data mining, a dataset is considered sufficient if
adding more data into it will not increase the generalization accu-
racy. How much data is sufficient really depends on the combina-
tion of dataset, chosen learning algorithms and application related
loss function. Given an infinite amount of training data, determin-
ing the sufficiency amount can be formidably expensive especially
for hill-climbing based methods such as decision tree learner. One
important requirement for streaming mining that completely inval-
idate the need for sufficiency test is that even if the dataset is insuf-
ficient, we still need to train a model that can best fit the changing
data.

3. WILL OLD DATA REALLY HELP?
We analyze the effect of old data under two situations. The first

situation is that the underlying model does not change. Obviously,
older data will help improve accuracy if the recent data is insuffi-
cient and the combined old data and most recent data doesn’t overfit
the inductive learner. One important question to ask is: if the model
doesn’t change, what is the utility to update and train a new model?
The answer is: it is only useful to combine older and new data to
retrain a model, if the older data is insufficient by itself.

The second situation is that the underlying model does change.
We discuss how the previous data chunks SP = S1 ∪ . . . ∪ Si−1

might help to improve a model trained only from the most recent
data chunk Si. The data in SP can be one of the following three
major categories.

• The first type of data are those where FOi−1(x) �= FOi(x).
They are a superset of the τ inconsistencies in the universe of
all examples. The reason is that FOi and FOi−1 are optimal
models, but not perfect models, and they both make mistakes.

129

Research Track Paper

Figure 1: How to choose from old data

+

+

+

+
+

+

+
+

+ +

+

+
+

-

-

-

-

-

-

-

-

-

-
-

-

-
-

-

-- --

-
-

-

-
-

-
-

-

-
+

+

+
+

+ +

+
+

-

-
-

+

(a) Evolving hyperplane (b) Their optimal model (c) Those data that help

• The second type of data are those that both hypotheses make
the correct prediction, i.e., FOi−1(x) = FOi(x) = y.

• The third type of examples are those data that both mod-

els make the same wrong predictions, i.e.,
�
FOi−1(x) =

FOi(x)
�
�= y. Obviously, τ inconsistent examples will not

help. It will only cancel out the changing concept.

The only portion of data that may help is the portion that FOi−1(x)
and FOi(x) agree and they both make the correct prediction. This
is the portion of the data that doesn’t change its concept. Please
note that the third category of the data where both models agree
but their predictions are wrong cannot be determined if they will
help or not. Since these portion of data may be conceptual change
(hence the inconsistency portion) or due to the learning error of
the algorithm. Thus, when pattern does change, using older data
unselectively can be dangerous and misleading. The only data that
will help is those that are still consistent under the evolved models.

We illustrate the idea through a simple hyperplane example. Fig-
ure 1 shows an evolving hyperplane. Figure 1(a) shows the true
model of the evolving hyperplane. An example is positive (+) if
it is above the hyperplane; otherwise, it is negative (-). Although,
it actually makes no difference in distinguishing which is earlier
and which is later in its evolving process, we assume that the “flat-
ter” hyperplane is earlier and the more “vertical one” is later. In
Figure 1(a), we also plot both + and - instances. Obviously, the
consistent portion in the universe of instances are the top left (all
+) and bottom right (all -) areas. These are the only examples that
one hyperplane can help the other. The two smaller areas on the
bottom left and top right are inconsistent areas, where one hyper-
plane predicts + and the other predicts -. However, we do not know
and usually will never know these true models. The best we can
to is to find an optimal model. In Figure 1(b), we draw the deci-
sion tree optimal model (which are interpolated straight lines) for
both hyperplanes. In Figure 1(c), the shaded areas are those that
FOi−1(x) = FOi(x) = y, and they are a subset of the “agree-
ment” between the true models. Examples from these shaded areas
will help build optimal model for the newly evolved concept.

4. SIFTING THROUGH OLD DATA
So far, we have discussed the issues of concept drift and data

insufficiency that are possibly present in data streams. We have
also discussed the problem of using older data unselectively as well

also what examples in the older data that may help to construct a
better model. In this section, we first discuss a theoretically sound,
however impractical method and then propose a practically useful
framework as well as one efficient implementation.

4.1 Optimal Models
There are a large number of possibilities that can happen when

mining data streams. To clearly define our scope, we first make
some reasonable assumptions. We assume that training data is col-
lected without any known prior bias. In other words, if x has prob-
ability of p to be seen in the universe of valid examples, it has the
same probability p to be sampled without replacement from the
universe to form the training set. It is important to point out that we
clearly exclude the rare and unrealistic situation that the sampling
probability of x is significantly different from its true probability to
appear in the data stream. One such an example is one data chunk
with mostly positive examples and the second one with mostly neg-
ative examples.

Before we go into the details of the proposed algorithm, we enu-
merate all situations that we can think of and discuss the best choice
in each case and how to find the optimal model. The conclusion that
we will draw from this enumeration is that: “although there are a
lot of possibilities, but if we have an extremely efficient learning
algorithm that works the same way under all conceivable possibili-
ties, it will allow us to compare all sensible choices in a reasonable
amount of time and make the best choice.”

The two main themes of our comparison is on possible data in-
sufficiency and concept drift. We start from simple cases.

• New data is sufficient by itself and there is no concept
drift. The optimal model should be the one trained from the
new data itself since new data is sufficient. The older model
may also be an optimal model if it is trained from sufficient
data. However, the tricky issue is that we do not know and
will usually never know if the data is indeed sufficient and
the concept indeed remains the same. However, it doesn’t
hurt to train a new model from the new data, a new model
from combined new data and old data, and compare with the
original older model to choose the more accurate one if the
learning cost is affordable.

• New data is sufficient by itself and there is concept drift.
The optimal model should be the one trained from the new
data itself. Similar to the previous situation, we do know and
will never know if the data is indeed sufficient and the con-

130

Research Track Paper

cept indeed remains the same. Ideally, we should compare a
few sensible choices if the training cost is affordable.

• New data is insufficient by itself and there is no concept
drift.. If the previous data is sufficient, the optimal model
should be the existing model. Otherwise, we should train a
new model from new data plus existing data and choose the
one with higher accuracy.

• New data is insufficient by itself and there is concept drift.
Obviously, training a new model from new data only doesn’t
return the optimal model. However, choosing old data unse-
lectively, as shown previously, will only be misleading. The
correct approach is to choose only those examples from pre-
vious data chunks that have consistent concept with the new
data chunk and combine those examples with the new data

4.2 Computing optimal models
We notice that the optimal model is completely different under

different situations. The choice for optimal model completely de-
pends on if the data is indeed sufficient and if there is indeed con-
cept drift. The ideal solution would be to compare a few plausi-
ble optimal models statistically, and choose the one with the high-
est accuracy. In the end, the target of stream mining is to find a
model that best fit the new data no matter there is a concept drift or
the data is sufficient. Next we discuss a conceptual framework for
this approach. We will propose an efficient algorithm to implement
this framework afterwards. To clarify some notation conventions,
FN(x) denotes a new model trained from recent data. FO(x) de-
notes an optimal model finally chosen after some statistical signifi-
cance tests. i is the sequence number of each sequentially received
data chunk.

1. Train a model FNi(x) from the new data chunk Si only.

2. Assume that Di−1 is the dataset that trained the most re-
cent “optimal” model FOi−1(x). It is important to point
out that Di−1 may not be the most recent data chunk Si−1.
Di−1 is collected iteratively throughout the streaming data
mining process. The exact way how Di−1 is collected will
be clear next. We select these examples from Di−1 that
both the trained new model FNi(x) and the recent optimal
model FOi−1(x) make the correct prediction. We denote
these chosen examples as si−1. In other words, si−1 =
{∀(x, y) ∈ Di−1, such that, (FNi(x) = y)∧(FOi−1(x) =
y)}.

3. Train a model FN+
i (x) from the new data plus the selected

data in the last step or Si ∪ si−1.

4. Update the most recent model FOi−1 with Si and call this
model FO+

i−1(x). To update a model, we keep the “struc-
ture” of the model and update its internal statistics. Using
decision tree as an example, every example in Si is “classi-
fied” or sorted to each leaf node. The statistics, i.e., the num-
ber of examples belonging to each class label, are updated.
Obviously, the training set for FO+

i−1(x) isDi ∪ Si.

5. Compare the accuracy of all four models (FNi(x),FOi−1(x),
FN+

i (x)), andFO+
i−1(x)) using “cross-validation” and choose

the one that is the most accurate and we name it FOi(x).

6. Di is the training set that computes FOi(x). It is one of
Si, Di−1, Si ∪ si−1, and Si ∪Di−1.

For the moment, we address how the above framework finds the
optimal model under all four previously discussed situations. Later,
we will propose an extremely efficient algorithm to implement this
“seemingly” expensive process.

1. New data is sufficient by itself and there is no concept
change. Conceptually FNi(x) should be the optimal model.
However, FN+

i (x), FOi−1(x) and FO+
i−1(x) could be its

close match since there is no concept change.

2. New data is sufficient by itself and there is concept change.
Obviously, FNi(x) should be the optimal model. However
FN+

i (x) could be very similar in performance to FN(x).

3. New data is insufficient by itself and there is no concept
change. The optimal model should be either FOi−1(x) or
FO+

i−1(x).

4. New data is insufficient by itself and there is concept change.
The optimal model should be either FNi(x) or FN+

i (x).

4.3 Discussion
There are two important questions about this data selection pro-

cess. One important question is that if more data from the history
will help or not. Formally, in our algorithm, we only consider to
include data fromDi−1, or the most recent chunk. The question is
if the data from (

Si−2
j=1Dj)−Di−1 will help or not. The answer is:

it may or may not. Even if it may, it may not help much. First of all,
one empirical assumption is that most recent data is closer to data of
its closest periods. Even though we completely don’t count on this,
it is a good argument against using data that are too old. Second of
all, the amount of data from the past cannot be overdone. When it
is overdone, the learner may overfit on the unchanging part of the
new concept and ignore the new part. In practical sense, choosing
the exact number of old examples to have the maximal accuracy is
not feasible. It is a combinatorial problem and the added benefits is
hard to justify the cost to do so.

The second question to ask is “will the training data Di become
unnecessarily large?”. The answer is no. Di only grows in size
(or includes older data) if and only if the additional data helps im-
prove accuracy. In other words, Di only grows in size whenever
necessary.

5. CROSS VALIDATION DECISION TREE
ENSEMBLE

We propose an efficient algorithm based on decision tree ensem-
ble to “sift through” old data and combine with new data to con-
struct the optimal model for evolving concept. The basic idea is to
train a number of random and uncorrelated decision trees. Each de-
cision tree is constructed by randomly selecting available features.
The structure of the tree is uncorrelated. Their only correlation is
on the training data itself.

5.1 Training and Testing
The algorithm first sequentially scans the complete dataset once

and finds out all features with information gain. To avoid noise
in the data, we provide a parameter ε as its “cut off” value. After
finding out f good features, it builds N “random decision trees”
from only these f good features. Features without information
gain will never be used. At each step, it chooses a “remaining”
feature randomly. Each discrete feature can be used at most once
in a particular decision path of the tree starting from the root of the
tree. Each continuous feature can be chosen multiple times on the
same decision path, but with a randomly chosen splitting threshold
each time this continuous feature is chosen. The splitting thresh-
old is a random value within the max and min of that feature. To
handle missing values in the training data, each example x is as-
signed an initial weight of w = 1.0. When missing feature value is
encountered, the current weight of x is distributed across its chil-
dren nodes. If the prior distribution of known values are given, the

131

Research Track Paper

weight is distributed in proportion to this distribution. Otherwise, it
is equally divided among the children nodes. The tree stops grow-
ing a branch if there are no more examples passing through that
branch.

To classify an example, raw posterior probability is required. If
there arenc examples out of n in the leaf node with class label c, the
probability that x is an example of class label c is P (c|x) = nc

n
.

Some leaf node, especially a branch from a discrete feature test,
may not have any examples. When this happens, it carries the
probability from its parent node. Some examples (such as those
with missing values) will be classified by multiple decision paths.
We count the number of examples in each leaf belonging to dif-
ferent classes along with their weights. Assume x is classified
by paths A and B with weights 0.3 and 0.7 respectively. The leaf
under path A has 100 out of 2000 examples belonging to class c.
Similarly, path B has 200 out of 1000 examples belonging to class
c. Then the probability that x is an instance of class x is simply,
P (c|x) = 0.3·100+0.7·200

0.3·2000+0.7·1000 . Each tree computes a posterior prob-
ability for an example and the probability outputs from multiple
trees are averaged as the final posterior probability of the ensem-
ble.

To make a decision, application specific loss function is required.
For a binary problem under 0-1 loss, if P (y|x) > 0.5, the best
prediction is y. For cost-sensitive application such as credit card
fraud detection, assuming that the cost to investigate a fraud is $90
and Y (x is the amount of the transaction. We predict fraud if and
only if P (fraud|x) · Y (x) > $90. In other words, we only save
money if and only if the expected loss is more than the cost of doing
business.

5.2 Cross Validation
We propose to use the decision tree ensemble trained from the

training set for cross-validation test. Assuming that n is the size of
the training set, n-fold cross validation leaves one example x out
and uses the remaining n − 1 examples to train a model and clas-
sify on the left-out example x. If n is non-trivial, the exclusion of
x is very unlikely to change the subset of features having informa-
tion gain (those found out in the first step to train the decision tree
ensemble). With the same seed, the random number function gen-
erates the same sequence of numbers. In this case, the structures of
the trees remain the same even when x is excluded from the training
set. The only difference is the class distribution statistics recorded
in the nodes. Any node that classifies x will have one fewer exam-
ple for the true class label of x. When we compute the probability
for the excluded x under n-fold cross validation using the original
decision tree ensemble, we need to compensate this difference.

Assuming that we have two class labels, either fraud or non-
fraud, to compute the probability of the excluded x being fraudu-
lent is simply(

nfraud−1

nfraud−1+nnormal
if x is indeed a fraud

nfraud

nfraud+nnormal−1
if x is a normal transaction

The minimal number of examples in any node is generally set to 2.
If a node originally has only 2 examples in total, the parent node is
used to compute the probability for cross-validation to avoid over
estimation. It is important to subtract 1 based on x’s true class
label. If we did not subtract 1 in the formula, the probability for
being a member of the positive class would be over-estimated for
true positives and under-estimated for negatives positives. For ex-
ample, a leaf node has 10 examples with 7 frauds and 3 non-frauds.
If we did not subtract 1, the probability for being a fraud would be
7
10

= 0.7. In fact, the probability to be fraud for a true fraud trans-

action is 7−1
10−1

= 0.67, and the probability to be fraud for a normal
transaction is 7

10−1
= 0.78.

5.3 Update Decision Tree Ensemble
In Section 4.2, we discussedFO+

i−1(x) or the old model updated
with new streaming data. To update the decision tree ensemble is
similar to classification. For every example in the new data chunk,
we simply increment the class label count in each classifying node.

5.4 Training and Memory Efficiency
The total time to choose the right data and compute the optimal

model includes the time to compute a new ensemble from the new
data chunk, update the recent ensemble, train a new ensemble from
incremented dataset, as well as compare four candidate models on
the new data. Obviously, in our particular implementation, com-
paring candidate models using n-fold cross-validation is the same
as classifying the training dataset. Classification with decision tree
is an efficient procedure. Updating the recent ensemble is the same
as classifying on the new data. Computing information gain of fea-
tures from the complete training set requires grouping of different
feature values multiple times for all features and is an expensive
procedure. However, this is done only once for multiple CV de-
cision trees. We construct each tree by randomly selecting from
the pool of candidate good features and do not compute any infor-
mation gain; the only operation is to group training items once at
each node. The training for multiple CV decision trees is an effi-
cient procedure, especially when there are a lot of features or the
training set contains a large number of data items.

Each tree in the CV decision tree ensemble is very likely larger
in size than a best tree built by checking information gain at each
step. The whole purpose of information gain is to find a smaller
tree. In our experimental study, we will record the size of each
tree in the ensemble and compare it with the single best tree trained
from the same dataset.

6. EXPERIMENT
We conducted extensive experiments on both synthetic and real

life data streams. Our goals are to demonstrate that the proposed
method can efficiently and effectively compare all sensible choices
and choose to build the most accurate model under all combinations
of situations. Our framework was modified from C4.5 classification
tree. We always compute 10 trees for each CV decision tree ensem-
ble. The threshold for information gain, ε, is set to be 0.001. We
have used both 0-1 loss and cost-sensitive loss to evaluate perfor-
mance.

6.1 Streaming Data

Synthetic Data.We create synthetic data with drifting concepts
based on a moving hyperplane. A hyperplane in d-dimensional
space is denoted by equation:

Pd
i=1 aixi = a0. We label exam-

ples satisfying
Pd

i=1 aixi ≥ a0 as positive, and examples satis-
fying

Pd
i=1 aixi < a0 as negative. Hyperplanes have been used

to simulate time-changing concepts because the orientation and the
position of the hyperplane can be changed in a smooth manner by
changing the magnitude of the weights [Hulten et al., 2001].

We generate random examples uniformly distributed in multi di-
mensional space [0, 1]d. Weights ai (1 ≤ i ≤ d) are initialized
randomly in the range of [0, 1]. We choose the value of a0 so that
the hyperplane cuts the multi-dimensional space in two parts of the
same volume, that is, a0 = 1

2

Pd
i=1 ai. Thus, roughly half of the

examples are positive, and the other half negative. Noise is intro-

132

Research Track Paper

duced by randomly switching the labels of p% of the examples. In
our experiments, the noise level p% is set to 5%.

We simulate concept drifts by a series of parameters. Parame-
ter k specifies the total number of dimensions whose weights are
changing. Parameter t ∈ R specifies the magnitude of the change
(every N examples) for weights a1, · · · , ak, and si ∈ {−1, 1}
specifies the direction of change for each weight ai, 1 ≤ i ≤ k.
Weights change continuously, i.e., ai is adjusted by si · t/N af-
ter each example is generated. Furthermore, there is a possibility
of 10% that the change would reverse direction after every N ex-
amples are generated, that is, si is replaced by −si with probabil-
ity 10%. Also, each time the weights are updated, we recompute
a0 = 1

2

Pd
i=1 ai so that the class distribution is not disturbed.

Credit Card Fraud Data.We use real life credit card transac-
tion flows for cost-sensitive mining. The data set is sampled from
credit card transaction records within a one year period and con-
tains a total of 5 million transactions. Features of the data include
the time of the transaction, the merchant type, the merchant loca-
tion, past payments, the summary of transaction history, etc. We
use the benefit matrix shown in the table below with the cost of
disputing and investigating a fraud transaction fixed at cost = $90,
and let t(y) be the transaction amount of y. The following is the
benefit matrix to compute the overall loss:

predict fraud predict ¬fraud
actual fraud t(x) - $90 0
actual ¬fraud -$90 0

The total benefit is the sum of recovered amount of fraudulent trans-
actions less the investigation cost. To maximize benefits, we only
predict fraud if and only if p(fraud|x) · t(x) > $90. To study the
impact of concept drifts on the benefits, we derive stream by order-
ing the records with increasing transaction amount. In other words,
the original decision tree is trained with transaction records of low
transaction amount and the data stream has increasing transaction
amount. It is then split into multiple chunks of equal size.

Donation Dataset.The third one is the famous donation dataset
that first appeared in KDDCUP’98 competition. Suppose that the
cost of requesting a charitable donation from an individual x is
$0.68, and the best estimate of the amount that x will donate is
Y (x). Its benefit matrix (converse of loss function) is:

predict donate predict ¬donator
actual donate Y(x) - $.0.68 0
actual ¬donate -$0.68 0

The accuracy is the total amount of received charity minus the cost
of mailing. Assuming that p(donate|x) is the estimated probabil-
ity that x is a donor, we will solicit to x iff p(donate|x) · Y (x) >
0.68. The data has already been divided into a training set and a test
set. The training set consists of 95412 records for which it is known
whether the person made a donation and how much the donation
was. The test set contains 96367 records for which similar dona-
tion information was not published until after the KDD’98 compe-
tition. The feature subsets (7 features in total) were based on the
KDD’98 winning submission. To estimate the donation amount,
we employed the multiple linear regression method. The donation
dataset has very small number of donors (less than 5% in total).
It is difficult to use the same “sorting” approach as the credit card
dataset. Instead, we shuffle the dataset 5 times. From each shuffled
dataset, we sequentially sample different number of examples.

6.2 Experiment Setup
We have a number of dimensions to compare and evaluate.

1. We first need to justify our claims that using old data unse-
lectively is the same as gambling; sometimes, it may increase
accuracy, and other times, it may decrease accuracy.

2. The most important set of results is to show that the pro-
posed framework and its CV decision tree ensemble imple-
mentation can indeed efficiently and accurately choose the
most accurate sensible model under all different kind of situ-
ations. We evaluate both the accuracy and training time and
memory consumption.

3. The accuracy of the n-fold cross validation is an important
issue. We study if the estimated probability by n-fold cross
validation is close the estimated probably on an unseen dataset.

4. Since in reality, chunksizes can be arbitrarily small, to show
that the decision tree ensemble is resilient to data insuffi-
ciency, we measured the change in accuracy with increasing
training data size. As a comparison, we show the accuracy
result of single best decision trees.

6.3 Evidence of using data unselectively may
hurt

We use both the hyperplane synthetic dataset and credit card
dataset to illustrate that using old data unselectively may hurt. It
is important to point out that we didn’t run experiment with no
conceptual change. It is obvious that when there is no conceptual
change, using old data will most likely help unless it overfits the
learner. The moral of this experiment is to show that when the con-
cept does change, it really depends on the combination of chosen
method, changing degree and, data size to decide if using old data
unselectively will help increase the accuracy.

We ran a series of experiments with increasing data chunksize.
For each chosen data chunksize, we construct a series of models
using different amount of training data.

• Use new data only: G1 is the single best unpruned C4.5
tree trained from the new data chunk only without using any
previous data.

• Different ways to use old data unselectively: GA is a sin-
gle decision tree trained from the complete dataset using all
available data from the very beginning of the data stream.
VFDT [Domingos and Hulten, 2000] builds a decision tree
virtually the same as GA. Gi (i ≥ 2) is a single decision
tree trained from the the new data chunk plus the most re-
cent i−1 data chunks. The CVFDT algorithm [Hulten et al.,
2001] trains a model similar toGi’s. Ei is a decision tree en-
semble trained from the same data chunks as Gi. Each tree
in the ensemble is trained from one data chunk. A weight is
assigned to each tree in the ensemble that is correlated to its
accuracy on the new data chunk [Wang et al., 2003].

The results for the synthetic dataset with dimension d = 10 are
in Table 1 under the columns of “use new data only” and “dif-
ferent ways to use old data unselectively”. In our experiments,
we incremented the data chunksize by 250. The concept drift is
simulated by various parameters: the number of dimensions with
changing weights ranges from 2 to 8, and the magnitude of the
change t ranges from 0.1 to 1.0 for every 1000 examples. Each
result is the average of different conceptual change with the same
chunksize. We bold face a result if it is better than G1, the model
computed only from the new data. It is important to point out that
results of “different ways to use old data unselectively” for chunk-
sizes={250,500,750,1000} were reported in our previous work [Wang
et al., 2003]. The brand new results are those in column “use old
data selectively” as well as additional chunksizes = {1500, 2000,

133

Research Track Paper

5000, 20000} that were not tested previously. We use the same
random seed sequence as in our previous work to generate the
streaming data. For analytic purposes, we find out how much data
is approximately sufficient for a fixed hyperplane with dimension
d = 10. We increased the amount of data by 100 instances, re-
constructed a new single unpruned C4.5 tree at every increment,
and found that after about 2000, the error rate remained between
4% and 7%. In other words, a training set with size 2000 is prob-
ably sufficient. From the results in Table 1, when the data chunk
is ≤ 1000, any methods that use old data help. After the size of
data chunk is more than 1000, the difference between using new
data only G1 and all other models using some amount of older
data unselectively (GA, Ei’s and Gi’s, i ≥ 2), have all started
to decrease. When the data chunk has 2000 instances, the advan-
tage of using any amount of old data diminishes to nearly none.
When the chunksize increases further more (i.e., 5000 and 20000),
any methods that use any amount of old data unselectively are only
detrimental; none of the methods that uses old data unselectively is
more accurate than the simple model trained from new data itself.

Similar phenomenon is observed in the credit card dataset sorted
with increasing transaction amount, as shown in Table 2. For an-
alytic purpose, we find out sufficient training size by shuffling the
data set completely, using 10% for testing, incrementing the train-
ing set by 1000 examples, and training a new unpruned decision
tree at each increment. After approximately 15000 examples, the
benefit ($) or accuracy on the 10% test data stabilizes. From the
results in Table 2, we observe that it helps to use old data unselec-
tively only when the chunksize is ≤ 24000. After 24000, using old
data unselectively starts to drive down the overall dollar benefits.

6.4 Result of CV Decision Tree Ensemble
The results of cross-validation decision tree ensemble that sys-

tematically selects data to build optimal model are shown in the last
column “Use old data selectively” of Tables 1 to 3. It is important
to emphasize that the optimal CV decision tree model is chosen by
comparing the accuracy of four models: a new CV decision tree
trained from the new data chunk only (FNi(x)), updated CV deci-
sion tree (FO+

i−1(x)), a new CV decision tree trained from the new
data chunk plus selected consistent examples that trained the most
recent optimal CV decision tree (FN+

i (x)), and the most recent
optimal CV decision tree itself (FOi−1(x)).

There are two important observations from the results of the syn-
thetic dataset in Table 1. First, the error rate of the CV decision tree
ensemble (under “Use old data selectively”) is significantly lower
than any other methods in comparison, either training from the new
data only or some unselective use of old data. The difference is par-
ticularly big when the chunksize of the new dataset is small. The
second observation is that the error of the CV decision tree ensem-
ble remains relatively stable around 6%, while all other competitive
methods are sensitive to the data chunksize.

The results on the credit card data set is shown in Table 2. Each
reported result in dollar amount is the average of multiple runs. The
chunksize is from 3000 to 48000 transactions per chunk. The bene-
fits increase as the chunksizes increase, as more fraudulent transac-
tions are discovered in the chunk. Similar to the synthetic dataset,
the CV decision tree ensemble is consistently better than training
from new data chunk alone and training from new data plus some
ad hoc selection of recent data chunks. When the chunksize is as
small as 3000, the best method (E8) that uses previous data unse-
lectively recovered $77735, but the CV decision tree ensemble that
systematically selects previous data recovered $81354. When the
chunksize is as big as 48000, none of the methods (GA, Gi’s and
Ei’s, i ≥ 2) that use old data unselectively recovered more money

than training from the new data itself (G1). However, CV decision
tree ensemble still recovered $582918, which is $20000 more than
G1.

The results on the donation dataset are shown in Table 3. Each
number is the average of 5 runs. Obviously, any methods that uses
more data than the new data itself is better, and the most accurate
model is GA, the model trained from all available data in history.
The CV decision tree ensemble is the second highest after GA and
very close to GA for all different chunksizes. Training with all
available data is consistently better than the CV decision tree en-
semble is due to very skewed distribution (< 5% donors) and small
data size (95412). In this situation, using more data almost always
helps. However, we conjecture that if we had more training data
beyond 95412, the accuracy of CV decision tree ensemble will in-
crease and eventually reach GA.

6.5 Accuracy of Cross-validation
To evaluate how accurate is the n-fold cross-validation in esti-

mating the true probability on a completely unseen testing data,
we use 90% of the credit card fraud data for training and 10% of
data for testing. We use the formulas in Section 5.2 to estimate the
probability on new data. The results are plotted using “reliability
plots” shown in Figure 2. Reliability plot shows how reliable the
score of a model is in estimating the empirical probability of an
example x to be a member of a class y. To draw a reliability plot,
for each unique score value predicted by the model, we count the
number of examples (N) in the data having this same score, and the
number (n) among them having class label y. Then the empirical
class membership probability is simply n

N
. Most practical datasets

are limited in size; some scores may just cover a few number of
examples and the empirical class membership probability can be
extremely over or under estimated. To avoid this problem, we nor-
mally divide the range of the score into continuous bins and com-
pute the empirical probability for examples falling into each bin.
To summarize these results, we use mean square erroror MSE to
measure how closely the score matches the empirical probability.
Assuming that nj is the number of examples covered in bin j, sj is
the score or predicted probability and pj is the empirical probabil-

ity, thenMSE =

√
nj ·(sj−pj)2
P

nj
.

The reliability plot using cross validation is the left one in Fig-
ure 2 with the subtitle of “(a) cv probability estimate” and the reli-
ability plot of the same model tested on unseen test data set is the
middle one with the subtitle of “(b) testing probability estimate”.
The shape of these two reliability plots are very similar. On the
other hand, on the right plot with the subtitle of “(c) training prob-
ability estimate”, we draw the training reliability plot. The differ-
ence of cv reliability plot and training reliability plot is whether to
subtract 1 depending on the true label of the data. Obviously, with-
out subtracting 1 for true positives, the score or estimated probabil-
ity tend to significantly under estimate its true probability. Compar-
ing the MSE’s, the CV probability estimate plot has MSE=0.041,
while the training probability plot has a much higher MSE=0.081.

6.6 How big is the incremental training set
As discussed in Section 4.2, the dataset that trains the optimal

model could increase when the concept does change and the chunk-
size is significantly insufficient. We recorded the biggest training
set in our experiments. For the synthetic dataset, it is approximately
1500 to 2500 under all experimented chunksizes. A detailed plot
for all test runs (i.e., different amount of change and the number
of dimensions affected) with dimension d = 10 and chunksize =
250 is shown in Figure 3. Each point is the size of the incremental
dataset that trained the optimal model FOi(x). 20 chunks of the

134

Research Track Paper

Use new Different ways to use old data unselectively Use old data

ChunkSize data only selectively

G1 GA G2 E2 G4 E4 G6 E6 G8 E8 FO
250 18.76 18.09 18.00 18.37 16.70 14.02 16.72 12.82 16.76 12.19 6.34
500 17.59 17.65 16.39 17.16 16.19 12.91 15.32 11.74 14.97 11.25 6.48
750 16.47 17.18 16.29 15.77 15.07 12.09 14.97 11.19 14.86 10.84 6.12
1000 16.00 16.49 15.89 15.62 14.40 11.82 14.41 10.92 14.68 10.54 6.03
1500 10.81 16.03 13.43 11.98 12.88 10.82 12.78 10.45 12.13 10.25 5.88
2000 8.47 15.12 12.94 8.98 12.02 9.87 11.45 8.78 10.48 8.34 5.98
5000 5.72 14.24 10.86 7.13 11.02 7.45 10.78 7.35 10.84 7.45 5.78
20000 4.15 10.10 5.66 4.74 7.82 5.62 8.94 6.62 9.10 7.58 4.11

Table 1: Synthetic Dataset: Classification Error (%) using Single Best Decision Tree, Weighed Averaging Ensemble, and CV Decision
Tree Ensemble

Use new Different ways to use old data unselectively Use old data

ChunkSize data only selectively

G1 GA G2 E2 G4 E4 G6 E6 G8 E8 FO
3000 51943 65470 55788 61793 59344 70403 62344 74661 66184 77735 81354
4000 62181 96879 66581 82663 72402 95792 74589 101930 76079 103501 126565
6000 102099 146848 102330 129917 113810 148818 118915 155814 123170 162381 193177
12000 207392 296144 233098 268838 248783 313936 263400 327331 275707 360486 387548
24000 388646 356481 387464 391024 375292 389368 3723083 388342 361256 368839 414124
48000 561244 421455 517320 529543 498727 501492 465514 486814 452039 455830 582918

Table 2: Credit Card Dataset: Benefits (US $) using Single Classifiers, Weighted Averaging Ensembles, and CV Decision Tree
Ensemble

Figure 3: Size of incremental training set for the synthetic data
set with d=5 and chunksize = 250

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600 700 800 900 1000

S
iz

e
of

 Im
cr

em
en

ta
l D

at
as

iz
e

Test Run Sequence

same size (i.e., 250) are continuously generated with drifting con-
cepts. As shown in Figure 3, for one complete test run, the size of
the incremental training set nearly all monotonically increases. At
the end, the biggest size of all tests settles down in between 1500
and 2500. It is evident that old data are being chosen judiciously to
construct the new model to fit the changing concept.

For the credit card dataset, the biggest size is approximately
15000 to 20000 when chunksize ≤ 12000 and approximately 40000
when chunksize ≥ 24000. For the donation dataset, the biggest size
nearly increases up to about 10000 to 20000 until there are no more
data to run the experiment. We conjecture that this size would still
grow if we had more training data beyond 95412.

6.7 Optimal Models
One important aspect of our proposed algorithm is to choose the

optimal model under different situations. As a particular study,
we recorded the number of times that each of the four models,
FNi(x), FN+

i (x), FOi−1(x) and FO+
i−1(x), is the actual op-

timal model with the lowest loss. For the synthetic dataset with

chunksize FN(x) FN+(x) FOi−1(x) FO+
i−1(x)

250 289 517 99 407
2000 359 501 104 445
20000 879 212 45 30

Table 4: Optimal model counts for synthetic dataset

Figure 4: Training time of different models

0

100

200

300

400

500

600

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
ra

in
in

g
T

im
e

in
 S

ec
on

ds

Chunksize

G1: Single Best Tree trained from New Data Only
FO: CV Decision Tree Ensemble
E8: Weighted Ensemble Using 8 Recent Data Chunks

dimension d = 10, chunksize = 250 is absolutely insufficient,
chunksize = 200000 is absolutely sufficient, and chunksize=2000
is moderate. The number of times each of the four models is the
optimal model is shown in Table 4. Two or more models can have
exactly the same lowest error rate. When this happens, all these
models are optimal and the counts for all of them are incremented.
As a summary of Table 4, FN+(x) is the optimal model most of
the times when the data is insufficient, and FN(x) becomes the
optimal model most of the time when the data is sufficient.

6.8 Training and Memory Efficiency
We recorded the running time to train different models. The

results for the credit card dataset are shown in Figure 4. The x-

135

Research Track Paper

Use new Different ways to use old data unselectively Use old data

ChunkSize data only selectively

G1 GA G2 E2 G4 E4 G6 E6 G8 E8 FO
94 5 16 6 6 8 9 8 10 9 11 13
188 7 29 9 10 11 16 15 15 19 20 26
376 15 41 17 18 19.4 21 23 24 27 28 37
752 28 96 33 30 42 45 48 51 64 80 82
2988 141 412 171 182 201 245 237 320 284 370 381
5976 401 879 420 470 497 520 580 610 728 712 761

Table 3: Donation Dataset: benefits (US $) using Single Classifiers, Weighted Averaging Ensembles, and CV Decision Tree Ensemble

Figure 2: Results of Cross-validation and Testing

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

MSE = 0.0416023

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

MSE = 0.027554

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1E
m

pi
ric

al
 C

la
ss

 M
em

be
rs

hi
p

P
ro

ba
bi

lit
y

Score

MSE = 0.081202

(a) CV probability estimate (b) testing probability estimate (c) training probability estimate

axis is the chunksize and y-axis is the training time. In this fig-
ure, we compare the time to construct a single best tree from the
new dataset only (G1), a CV decision tree ensemble (FO) as well
as a weighted ensemble that always use fixed amount of old data
(E8). It is important to point out that the CV decision tree ensem-
ble result includes the total time to compute a new CV decision tree
from new data only, update most recent CV decision tree ensemble,
train a new CV decision tree ensemble from new data and selected
only data as well as to compare these models’ and the most recent
model’s accuracy in the new data. The training time of the weighted
ensemble E8 includes the training time ofG1 as well as the time to
assigns weights to each of the eight decision trees in the ensemble.
When the chunksize is small (< 12000), it takes more time to train
CV decision tree ensemble. This is due to the overhead of memory
allocation and numerous file operations. However, after 12000, the
training time for the single best tree G1 as well as the weighted
ensemble E8 starts to shoot up significantly while the training time
for the CV decision tree ensemble is less and grows at a lesser rate.

We saved each unpruned random tree in the file system for all
three datasets. For each dataset, the size of each CV decision tree
is very close. Comparing their size with the single best tree, the
size of random tree is approximately 2 to 3 times the size of the
single best tree. The saved size of each tree is a good indicator
of its relative size in memory. Since we construct each tree in the
ensemble one at at time, 2 to 3 times the size of the single best tree
in main memory is reasonable.

6.9 Tolerance to Data Insufficiency
We ran experiments with sampling size ranging from 1

27 , 1
26 to

the full size of the “completely shuffled” original dataset on all
three datasets. We generated a decision tree ensemble with 10 deci-
sion trees and 1 unpruned best single decision tree for comparison.
It is important to point out that the decision ensemble and the best
tree uses exactly the same dataset for this study. The purpose is to
show that the ensemble approach has high tolerance for data insuf-

Figure 5: Data Sufficiency Test on Donation Dataset

6000

7000

8000

9000

10000

11000

12000

13000

14000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 P

ro
fit

s

Sampling Size

Single Best Unpruned Tree
CV Decision Tree Ensemble

6000

7000

8000

9000

10000

11000

12000

13000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
ot

al
 P

ro
fit

s

Sampling Size

Single Best Unpruned Tree
CV Decision Tree Ensemble

(a) full range (b) enlarged area up to 0.1

ficiency with the same amount of training data. Each test was run 5
times and the results are the average of 5 runs. Figure 5 is the result
on the donation dataset. The x-axis is the sampling size and the y-
axis is the profits, i.e., the amount of donation minus mailing cost.
Obviously, the decision tree ensemble tree has very high tolerance
to insufficient amount of data. When the training data size is about
0.007812% of the original training set (or approximately 900) ex-
amples, the total profit of the ensemble is already very close to the
total profit of the same model trained from 100% training data.

7. RELATED WORK
The original idea of generating random structured decision tree is

proposed in [Fan et al., 2003, Fan, 2004a]. Our algorithmic exten-
sion is on the initial scan of the data to figure out a candidate pool
of good features. The obvious advantage of this step is the ability
to build only relevant and good trees. The number of trees required
to approximate the optimal model will be much smaller. On the
other hand, the introduction of random tree into streaming mining
is completely new. On the empirical part, the introduction of n-fold
cross-validation is new and particular important for streaming min-

136

Research Track Paper

ing. Breiman has proposed the “random forests” method [Breiman,
2001]. In random forests, randomness is injected by randomly sam-
pling a subset of remaining features (those not chosen yet by a de-
cision path) and then choosing the best splitting criteria from this
feature subset. The chosen size of the subset has to be provided by
the user of random forests. However, in CV decision tree ensem-
ble, the splitting feature is randomly chosen from any remaining
features not chosen yet in the current decision path. Besides the ini-
tial step to choose candidate features with information gain, there
is no additional information gain check involved in choosing this
feature and when it will be chosen. The data is only used to update
the class distribution in each node. However, in Breiman’s random
forests, information gain or other criteria is still used to choose the
best feature among randomly chosen feature subsets. Another im-
portant distinction is that Breiman’s random forests performance
simple voting on the final prediction. In other words, each tree
votes 1 on one of the class labels. The class labels with the highest
vote is the final prediction. However, in CV decision tree ensem-
ble, each tree output raw probability and the probability outputs
from multiple tree are averaged as the final probability.

8. CONCLUSION
Three important points are made in this paper. First, we argue

that using old data unselectively is like gambling. It definitely helps
build a more accurate model if the there isn’t any concept drift and
the new data chunk is insufficient. When there is concept drift, us-
ing old data unselectively helps if the new concept and old concept
still have consistencies and the amount of old data chosen arbitrar-
ily just happen to be right. We justify this claim through a synthetic
dataset and ran several stream mining models that use old data uns-
electively. Based on this observation, we discuss how to choose old
data and the best hypothesis under different situations, i.e., whether
there is concept drift and whether the new data is indeed sufficient.
However, we show that without having an oracle, detecting concept
drift and data sufficiency is difficult and non-quantitative. A useful
framework is one that is still able to select good old examples and
compute the optimal model even without knowing if there is indeed
concept drift or if the data chunk is indeed sufficient. Second, we
proposed a cross-validation-based framework to choose data and
compare sensible choices. Third, we proposed an implementation
of this framework using cross-validation decision tree ensemble.
The cross-validation decision tree ensemble is built by first read-
ing the complete dataset once to find out those candidate features
with information gain. We then construct multiple decision trees
by randomly choosing from those features with information gain
found in the previous step and ignoring any other features. Each
node of the tree keeps class distribution statistics. To classify an
example, the posterior probability outputs of multiple trees in the
ensemble are averaged. The best decision is made by using the
averaged probability and a dataset specific loss function. Cross-
validation is implemented by using the class distribution statistics
in each node without physically splitting the dataset and re-training
the ensemble. We evaluated our approach on three streaming data,
synthetic hyperplane dataset, credit card fraud detection as well as
charity donation. With various amount of new data and various
degrees of concept change, we have found that cross-validation de-
cision tree ensemble consistently has significantly lower error rate
than all compared existing approaches that use old unselectively.
This is particularly true when the size of the new data set is small.
The error rate by the proposed decision tree ensemble also remains
relatively stable independent of the amount of new data and degree
of concept-drifts. A demonstration of the software will be given in
VLDB’04 [Fan, 2004b].

Acknowledgement
We thank Dr. Haixun Wang’s generous help to transform our paper
drawing into the plot to illustrate the problem of data selection.

9. REFERENCES
Aggarwal, C. C. (2003). A framework for diagnosing changes
in evolving data streams. In Proceedings of ACM SIGMOD
2003, pages 575–586.
Babcock, B., Babu, S., Datar, M., Motawani, R., and Widom, J.
(2002). Models and issues in data stream systems. In ACM
Symposium on Principles of Database Systems (PODS).
Babu, S. and Widom, J. (2001). Continuous queries over data
streams. SIGMOD Record, 30:109–120.
Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.
Chen, Y., Dong, G., Han, J., Wah, B. W., and Wang, J. (2002).
Multi-dimensional regression analysis of time-series data
streams. In Proc. of Very Large Database (VLDB), Hong Kong,
China.
Domingos, P. and Hulten, G. (2000). Mining high-speed data
streams. In Int’l Conf. on Knowledge Discovery and Data
Mining (SIGKDD), pages 71–80, Boston, MA. ACM Press.
Fan, W. (August 2004b). StreamMiner: A classifier
ensemble-based engine to mine concept-drifting data streams.
In Proceedings of 2004 International Conference on Very Large
Data Bases (VLDB’2004), Toronto, Canada.
Fan, W. (July 2004a). On the optimality of probability
estimation by random decision trees. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence
(AAAI’2004), San Jose, California, USA.
Fan, W., an Huang, Y., Wang, H., and Yu, P. S. (April 2004).
Active mining of data streams. In Proceedings of 2004 SIAM
International Conference on Data Mining, pages 457–461.
Fan, W., Wang, H., Yu, P. S., and Ma, S. (2003). Is random
model better? on its accuracy and efficiency. In Proceedings of
Third IEEE International Conference on Data Mining
(ICDM’2003).
Gao, L. and Wang, X. (2002). Continually evaluating
similarity-based pattern queries on a streaming time series. In
Int’l Conf. Management of Data (SIGMOD), Madison,
Wisconsin.
Greenwald, M. and Khanna, S. (2001). Space-efficient online
computation of quantile summaries. In Int’l Conf. Management
of Data (SIGMOD), pages 58–66, Santa Barbara, CA.
Guha, S., Milshra, N., Motwani, R., and O’Callaghan, L.
(2000). Clustering data streams. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 359–366.
Hulten, G., Spencer, L., and Domingos, P. (2001). Mining
time-changing data streams. In Int’l Conf. on Knowledge
Discovery and Data Mining (SIGKDD), pages 97–106, San
Francisco, CA. ACM Press.
Street, W. N. and Kim, Y. (2001). A streaming ensemble
algorithm (SEA) for large-scale classification. In Int’l Conf. on
Knowledge Discovery and Data Mining (SIGKDD).
Wang, H., Fan, W., Yu, P., and Han, J. (2003). Mining
concept-drifting data streams with ensemble classifiers. In
Proceedings of ACM SIGKDD International Conference on
knowledge discovery and data mining (SIGKDD2003), pages
226–235.

137

Research Track Paper

