
Mining Closed Relational Graphs with Connectivity
Constraints∗

Xifeng Yan
Computer Science
Univ. of Illinois at

Urbana-Champaign

xyan@uiuc.edu

X. Jasmine Zhou
Molecular and Computational

Biology
Univ. of Southern California

xjzhou@usc.edu

Jiawei Han
Computer Science
Univ. of Illinois at

Urbana-Champaign

hanj@uiuc.edu

ABSTRACT
Relational graphs are widely used in modeling large scale
networks such as biological networks and social networks.
In this kind of graph, connectivity becomes critical in iden-
tifying highly associated groups and clusters. In this paper,
we investigate the issues of mining closed frequent graphs
with connectivity constraints in massive relational graphs
where each graph has around 10K nodes and 1M edges.
We adopt the concept of edge connectivity and apply the
results from graph theory, to speed up the mining process.
Two approaches are developed to handle different mining re-
quests: CloseCut, a pattern-growth approach, and Splat,
a pattern-reduction approach. We have applied these meth-
ods in biological datasets and found the discovered patterns
interesting.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications - Data Mining

General Terms: Algorithms

Keywords: graph, closed pattern, connectivity

1. INTRODUCTION
Graphs are natural representations of complicated struc-

tures and relationships among objects. Algorithms proposed
in [9, 10, 22, 17, 1, 8] can find frequent subgraphs effi-
ciently in chemical compound datasets. These algorithms
have been successfully used in protein classification [8] and
graph indexing [24]. There exists a specific kind of graph
structure, called relational graph, where each node label is
used only once per graph. Relational graph is widely used
in modeling and analyzing massive networks, e.g., biologi-
cal networks, social networks, transportation networks and
the world wide web. In biological networks, nodes repre-
sent objects like genes, proteins and enzymes while edges

∗The work was supported in part by U.S. National Science
Foundation NSF IIS-02-09199, Univ. of Illinois, and an IBM
Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

encode the relationships such as control, reaction and corre-
lation between these objects. In social networks, each node
represents a unique entity and an edge describes a kind of
relationship between entities. For instance, the Digital Bib-
liography & Library Project (DBLP) records multiple social
networks such as co-author relations and article-reference
relations.

One particular interesting pattern is frequent highly con-
nected subgraph in large relational graphs. In social net-
works, this kind of pattern can help identify groups where
people are strongly associated. In computational biology,
highly connected subgraph could represent a set of genes
within the same functional module, i.e., a set of genes partic-
ipating in the same biological pathways [3, 14]. Butte et al.
[3] calculates the pair-wise similarity between gene expres-
sions to construct relevance networks in order to discover
functional relationships between genes. Since a functional
module shall be active under multiple relevance networks,
a challenging problem is “can we discover highly connected
subgraphs conserved in multiple relevance networks?”

The common problem in the above application scenario is
to find not only frequent graphs, but also graphs that satisfy
the connectivity constraint. Figure 1 depicts our problem
setting: how to mine frequent highly connected subgraphs in
a set of massive relational graphs. Note that the patterns
we are interested in are not only groups of highly connected
objects, but also the structures within these objects, which
expose the relationships between the objects.

...

G1 G2 Gn pattern

Figure 1: Mining Massive Relational Graphs

This new problem setting has three major characteristics
different from the previous frequent graph mining problem
defined in [9, 10, 1, 22, 17]. First, in relational graphs each
node represents a distinct object. No two nodes share the
same label. In biological networks, nodes often represent
unique objects like genes and enzymes. Secondly, relational

graphs may be very large. For example, gene relevance net-
works often have thousands of nodes and millions of edges.
Thirdly, the interesting patterns should not only be frequent
but also satisfy the connectivity constraint. Previous studies
usually interpret a frequent graph as an object and ignore
its internal properties such as connectivity.

In order to handle these new challenges, two issues have
to be solved: (1) how to mine frequent graphs efficiently
in large relational graphs, and (2) how to handle the con-
nectivity constraint. Since frequent graph mining usually
generates too many patterns, as observed in [2, 25, 18, 23],
it is more appealing to mine closed frequent graphs only. A
frequent graph is closed if and only if there does not exist
a supergraph that has the same support. Assume graphs g
and g′ are frequent subgraphs and appear in the same set of
relational graphs. If g is contained by g′, then it is unnec-
essary to present graph g to users since it does not provide
new information. We say g is not closed. We develop an effi-
cient algorithm, cSpan, to address the first problem. Unless
specifically noted, the patterns discussed in the paper are
closed frequent graphs with connectivity constraints. Since
relational graphs can be represented as sets of distinct edges,
we adopt the frequent itemset mining technique. However,
we cannot directly cast this problem into a standard fre-
quent itemset mining problem due to two reasons. First,
the solution should assure the discovered graphs are con-
nected. Second, we have connectivity constraints. Simply
applying frequent itemset mining may immediately explode
the pattern space.

Our major contribution is to tackle the connectivity con-
straint. We use the minimum cut criterion to measure the
connectivity of a pattern and examine the issues of inte-
grating the connectivity constraint with the closed graph
mining process. As suggested by many graph theoretic ap-
proaches for data clustering [21, 13, 6], minimum cut mea-
surement, also called edge connectivity, is good at clustering
nodes based on their connectivity. The fastest determinis-
tic minimum cut algorithm in practice has time complexity
O(|V ||E| + |V |2log|V |), where |V | and |E| are the node set
size and the edge set size of a given graph [4, 15]. To com-
pute the edge connectivity in all subgraphs of closed graphs
is equivalent to enumerating all frequent graphs and check
their connectivity. Since billions of frequent graphs may ex-
ist in the datasets we are dealing with, it is impossible to fin-
ish the brute-force computation within limited time. Thus,
we develop two graph theoretic approaches, CloseCut (a
pattern-growth approach) and Splat (a pattern-reduction
approach), to efficiently discover closed highly connected
graphs while still preserving the completeness of the min-
ing result. We apply graph condensation and decomposi-
tion techniques in the design of CloseCut and Splat to
improve the performance. Both of them can reduce the size
of candidate graphs in terms of nodes and edges. CloseCut
and Splat are targeted to handle different mining requests.
Their pros and cons will be illustrated through our experi-
ments.

The contribution of this study is not only providing an
affordable solution to mine highly connected graphs in mul-
tiple relational graphs, but also the demonstration of how
frequent graph mining technology may help uncover inter-
esting patterns in scientific fields like biology. We have ap-
plied CloseCut and Splat in real biological datasets and
found the discovered patterns very promising. Although the

patterns mined by our methods need post-processing to ex-
tract other variant dense graphs such as cliques, the most
frequent patterns mined by our methods exhibit strong bio-
logical meanings and are directly usable.

The remaining of the paper is organized as follows. Sec-
tion 2 gives the problem definition. The theorems leading
to the efficient design of CloseCut and Splat are intro-
duced in Section 3, followed by a detailed explanation of
CloseCut in Section 4 and Splat in Section 5. We re-
port our performance result in Section 6. Related work is
discussed in Section 7, and Section 8 concludes our study.

2. FORMULATION
A relational graph set consists of undirected simple graphs,

{Gi = (V, Ei)}, i = 1, . . . , n, Ei ⊆ V × V , where a com-
mon vertex set V is shared by the graphs in the set. In
relational graphs, there is neither loop nor multiple edges.
Unless otherwise specified, all the graph patterns discussed
in this paper are undirected connected relational graphs.

A relational graph G = (V, E) is a subgraph of G′ =
(V, E′) if and only if E ⊆ E′, denoted by G ⊆ G′ (G′ is
a supergraph of G). Graphs G and G′ are isomorphic if
and only if E = E′. The testing of subgraph isomorphism
between two relational graphs is easy because labels have to
match exactly and each label is used only once in a graph.
We denote the vertex set of a graph G by V (G) and the edge
set by E(G).

In order to determine whether one set contains another
set, one can first sort the two sets and then compare them in
linear time. Hence, the complexity of subgraph isomorphism
testing of relational graphs is O(|E|log|E|), where |E| is the
size of the larger graph in two graphs. We define union,
intersection and difference operators for relational graphs.

Definition 1 (Union, Intersection, Difference).
Given two relational graphs, G = (V, E) and G′ = (V, E′),
the union of G and G′, written G ∪ G′, is (V, E ∪ E′). The
intersection of G and G′, written G∩G′, is (V, E∩E′). The
difference of G and G′, written G − G′, is (V, E \ E′).

Definition 2 (Constraint). A constraint is a func-
tion, C : {G} → {0, 1}, which maps a graph G to a Boolean
value. A graph G satisfies constraint C if C(G) = 1.

Given a relational graph dataset, D = {G1, G2, . . . , Gn},
support(g) is the number of relational graphs (in D) where g
is a subgraph. Let F = {g| support(g) ≥ min sup and C(g) =
1}, where min sup is an non-negative integer and C is a
constraint. F is called a frequent graph set with constraint
C. Often the closed set of F is more interesting: {g|g ∈
F, and ∄ g′ ∈ F s.t., g ⊂ g′ and support(g) = support(g′)}.
The reason of mining closed graphs is to avoid the exponen-
tial number of patterns in large graph datasets. In our study,
we shall concentrate on implementing the connectivity con-
straint and mining closed frequent graphs with connectivity
constraints. As observed in our experiments, the number of
such patterns is much less than closed frequent graphs.

Definition 3 (Degree). The degree of a vertex v is
the number of edges that connect v, written as degree(v).
The average degree of a graph G is the average of degree(v)
for all v ∈ V (G). The minimum degree of a graph G is the
minimum of degree(v) for all v ∈ V (G), written as σ(G).

e1

Figure 2: Average Degree:3.25, Minimum Degree:3

Although average degree and minimum degree display some
level of connectivity in a graph, they cannot guarantee the
graph is connected in a balanced way. Figure 2 shows an ex-
ample that some part of a graph may be loosely connected
even if its average degree and minimum degree are high.
The removal of edge e1 will make the whole graph fall apart.
One may enforce the following downward closure constraint:
a graph is highly connected if and only if each of its con-
nected subgraphs is highly connected. However, some global
tightly connected graphs may not be locally connected well.
It is a bit too strict to have this downward closure con-
straint. Thus, we adopt the concept of edge connectivity, a
well-known connectivity definition in graph theory.

Definition 4 (Edge Connectivity). Given a graph
G, an edge cut is a set of edges Ec such that E(G) − Ec is
disconnected. A minimum cut is the smallest set in all edge
cuts. The edge connectivity of G, written κ(G), is the size
of a minimum cut.

A cut Ec separates V (G) into two vertex sets, V and Ṽ ,
such that all the edges in Ec are only edges between V and

Ṽ , where V ∩ Ṽ = ∅ and V ∪ Ṽ = V (G). Ec is also written

as V → Ṽ to show that edges in Ec connect V and Ṽ . For
example, Set {e1} is a minimum cut of the graph shown
in Figure 2, which separates the graph into two equal-sized
components. Edge connectivity/minimum cut is popularly
used to cluster objects in a graph [21, 13, 6].

In this paper, we investigate the issues of mining all closed
frequent graphs with edge connectivity (minimum cut size) at
least K, where K is a natural number.

3. PROPERTIES OF CONNECTIVITY
We first examine several graph theoretic concepts about

edge connectivity.

Claim 1 (No Downward Closure Property). Given
two graphs G and G′, G ⊂ G′ and κ(G) ≤ κ(G′) do not im-
ply each other.

Claim 1 says that the high connectivity of a graph does not
imply the high connectivity of its supergraph, and vice versa.
There is no downward closure property for edge connectivity.
However, two specific kinds of graphs, clique and tree, have
the downward closure property. If a graph is a clique or a
tree, then all its induced connected subgraphs are cliques
or trees. As one can see, cliques and trees are either too
strict or too sparse. They may not catch some interesting
graph patterns. In fact, the lack of downward closure in edge
connectivity brings more flexibility on the kind of patterns
we may find.

Wu and Leahy [21] examined the properties of edge con-
nectivity. We derive two corollaries from Theorem 4 in [21]
and give self-contained proofs. We are not aware of any
previous work which applies these results in mining highly

connected patterns through multiple graphs, which will be
addressed in the next section.

Corollary 1 (Condensation). Let G be a subgraph
of a graph G′, and G∗ be the graph formed from G′ with
all vertices in G condensed into a single vertex. If κ(G) >
κ(G′), then κ(G∗) = κ(G′).

Proof. Let Vm → Ṽm be the minimum cut of G′. Since
κ(G) > κ(G′), then V (G) must be a subset of Vm or a subset

of Ṽm; otherwise, κ(G′) ≥ κ(G). In either case, Vm → Ṽm is

an edge cut of G∗. Therefore, κ(G∗) ≤ κ(G′). Let V ∗

m → Ṽ ∗

m

be the minimum edge cut of G∗. V ∗

m → Ṽ ∗

m is an edge cut
of G′. Thus, κ(G∗) ≥ κ(G′). Hence, κ(G∗) = κ(G′).

G1 G2 G3

Figure 3: Condensation

Example 1. Figure 3 shows an example of condensation.
The edge connectivity of graphs G1, G2, and G3 are 3, 2, and
2 respectively. We have κ(G1) > κ(G2) and G1 ⊂ G2. It is
safe to condense all the vertices of G1 into a single vertex
to form a new graph G3. G3 has the same edge connectivity
as G2.

Corollary 1 shows that we may reduce the cost of calcu-
lating edge connectivity if the connectivity of its subgraph
is known. This property is useful for the design of our
pattern-growth approach, CloseCut. For example, sup-
pose we have already discovered a highly connected graph
pattern g and extend it to a new candidate pattern g′. We
can form a new graph g∗ by condensing all the vertices of
g into a single vertex in g′. If we want to know the edge
connectivity of g′, we only need to check the connectivity of
g∗. Since g∗ is smaller than g′, the computation cost of edge
connectivity will be reduced. Note that g∗ is not a simple
graph any more. It may have multiple edges between two
vertices. Corollary 1, as well as Corollary 2, is also valid for
graphs with multiple edges.

Corollary 2 (Exclusion). Let G be a subgraph of a
graph G′ and Ec be an edge cut of G′ such that |Ec| < K.
If κ(G) ≥ K, then Ec

⋂
E(G) = ∅.

Proof. Let V → Ṽ be the edge cut Ec in G′. Since
κ(G) > |Ec|, then V (G) must be a subset of V or a subset

of Ṽ ; otherwise, Ec become a superset of an edge cut of
G, hence |Ec| ≥ κ(G). In either case, ∀e ∈ Ec, e 6∈ E(G).
Hence, Ec

⋂
E(G) = ∅.

Example 2. Figure 4 shows an example of exclusion. G2

is a subgraph of G1. G1 has an edge cut {e1, e2}. Assume
we want to find graph patterns with edge connectivity at least
3. According to Corollary 2, if a subgraph of G1 has edge
connectivity at least 3, it will not have edges e1 and e2. So
the deletion of e1 in G2 will not lose any pattern.

e1
e2

e1

G1 G2

Figure 4: Exclusion

Corollary 2 shows if a graph has an edge cut whose size is
less than K, then none of its subgraphs with edge connec-
tivity at least K will contain the edges in this cut.

If the edge connectivity of a closed frequent graph is less
than K, we have to find its subgraphs that have edge con-
nectivity at least K. Actually, each of them is a subgraph
defined in the maximum K-decomposition (Definition 5), a
variant of K-partition introduced in [21]. K-decomposition
breaks a graph into non-overlapping subgraphs such that
their connectivity is at least K. Using Corollary 3.2 in [21],
we can prove that the maximum K-decomposition is unique.

Definition 5 (K-decomposition). The K- decompo-
sition of an undirected graph G is a set of subgraphs {gi},
gi ⊆ G, s.t. κ(gi) ≥ K and gi ∩ gj = ∅. The maxi-
mum K-decomposition is a K-decomposition that maximizes∑

|E(gi)|.

We can construct a K-decomposition in a divide-and-
conquer manner: (1) select an edge cut whose size is less
than K in graph G (if there is such a cut); (2) decompose
G into two subgraphs by removing the cut edges; (3) re-
cursively call Steps 1 and 2 on every decomposed subgraph
until its edge connectivity is at least K or it becomes a sin-
gle vertex. The K-decomposition obtained in this way must
be the maximum K-decomposition and the only maximum
K-decomposition that G has.

Using K-decomposition to break a graph, we will not miss
any subgraph whose edge connectivity is at least K. Fur-
thermore, the divide-and-conquer property of K- decompo-
sition makes the mining affordable. We can further apply
Corollary 1 to condense a graph before we perform the de-
composition. For example, if a graph G has a subgraph
whose connectivity is at least K, we can condense all the
vertices of this subgraph into a single vertex to form a new
graph G∗. We then decompose G∗ instead of G to obtain
the highly connected subgraphs in G. Since G∗ is smaller
than G, the decomposition performance will be improved.

4. CLOSECUT: A PATTERN GROWTH AP-
PROACH

In this section, we formulate our first algorithm, CloseCut,
for mining closed frequent graphs with connectivity con-
straint. CloseCut adopts a pattern-growth approach: It
first finds a small frequent candidate graph and decomposes
it to extract the subgraphs satisfying the connectivity con-
straint. After that, CloseCut extends the candidate graph
by adding new edges and repeats the above operations. Be-
fore we discuss how to integrate the connectivity constraint
with the mining process, we first examine how to mine closed
frequent graphs from relational graph datasets.

4.1 Closed Frequent Graph Mining
Different from general labeled graphs, each node in re-

lational graphs has a unique label per graph. Because of
this special property, we can treat relational graphs as sets
of edges (vi, vj) and use the closed frequent itemset mining
technique instead of general graph mining algorithms.

Algorithm 1 cSpan(g, D, min sup, S)

Input: A graph g, a graph dataset D, a minimum support
threshold min sup.

Output: The closed frequent graph set S.

1: if ∃g′ ∈ S, g ⊂ g′ and support(g) = support(g′) then

return;
2: extend g to g′ as much as possible s.t.

support(g) = support(g′);
3: insert g′ to S;
4: scan D once, find every edge e s.t. g′ ∪ {e} is frequent;
5: for each frequent g′ ∪ {e} do

6: cSpan(g′ ∪ {e}, D, min sup, S);
7: return;

Algorithm 1 (cSpan) illustrates the framework of our closed
frequent graph mining engine. It adopts the pattern-growth
approach. A new graph is first extended from a small fre-
quent graph with new edges added in. Then the frequency
of the new graph is checked. In each iteration, cSpan ex-
tends a newly discovered frequent graph as much as possible
until it finds the largest supergraph with the same support.
Using this technique, many iterations that do not generate
closed graphs can be skipped. For example. Suppose there
is a set of frequent graphs g1, g2, ..., gn, where graph gi is
formed from gi−1 by adding one new edge (1 < i ≤ n). If
graphs g1, g2, . . ., and gn have the same support, one could
skip the search space between g1 and gn. This strategy low-
ers down the computation cost. Consequently, the graph
found in Line 2 is a closed frequent graph. Lines 4-6 dis-
cover the remaining supergraphs that have lower support.
According to the following lemma, there is one and only one
closed graph that can be extended from each frequent graph
in Line 2, Algorithm 1.

Lemma 1 (Uniqueness). Given a relational graph G,
there is one and only one closed relational graph G′ such
that G ⊆ G′ and support(G) = support(G′).

Proof. Assume to the contrary that there is another closed
graph G′′ s.t. G ⊂ G′′ and support(G) = support(G′′). Let
G∗ be the graph formed by G′∪G′′. G∗ is a connected graph
since G′ and G′′ share a common subgraph G. Therefore,
G′′ ⊂ G∗ and support(G′′) = support(G∗), contradicting
our assumption.

Lemma 1 does not hold for general labeled graphs. Be-
cause multiple subgraph isomorphisms may exist between
general graphs, we cannot claim in the proof that G∗ is a
connected graph any more.

4.2 Edge Connectivity Constraint
In the next section, we examine an issue raised by the

edge connectivity constraint when we attempt to integrate
this constraint with Algorithm 1.

G

g1 g2 gn

(a) Record Pattern G (b) Discard Pattern G

...

G

g1 g2 gn
...

highly connected graph
other graph
search

g'2

extract

... g'2
...

Search is stopped here

Figure 5: Search Space

Suppose we find a closed frequent graph G that does not
satisfy the connectivity constraint during mining, should we
record it or not? The answer depends on what we want to
optimize: space or time. Figure 5 shows an example of this
issue. Assume G has an exponential number of subgraphs
g1, g2, . . . , gn such that gi 6⊆ gj for any i and j. Suppose G
and {gi} have the same support and some graphs in {gi} sat-
isfy the connectivity constraint. After we extract the highly
connected graphs from G, we can either record G or discard
G. If we discard G, a potential problem arises: one prob-
ably has to generate g1, g2, . . . , gn individually in order to
determine whether they satisfy the constraint. Since G is
not recorded, the search space below gi cannot be skipped.
For example, assume g2 is expanded from g′

2 and they have
the same support. If we retain G in the memory, as shown
in Figure 5(a), we can immediately stop searching any su-
pergraph of g′

2 since g′

2 is a subgraph of G and they have
the same support. However, if G is discarded, we have to
grow g2 from g′

2 because there is no clue that the super-
graphs of g′

2 have already been checked. Considering a lot
of graphs have the similar condition as g2, it is inefficient to
generate them separately. It takes more time (by orders of
magnitude) to complete the mining. Therefore, we decide
to record closed graphs that do not satisfy the connectivity
constraint. Although it incurs additional space cost, we be-
lieve the shorter computation time is the key issue in our
applications.

4.3 The Framework of CloseCut
We build CloseCut based on Algorithm 1, incorporat-

ing the connectivity constraint. When it extends a frequent
graph, CloseCut attempts to remove the frequent edges
that will not be part of highly connected graphs.

Algorithm 2 sketches the framework of CloseCut, which
consists of four steps: (Step 1) find the closed graph of a
newly discovered graph (Lines 2-3); (Step 2) condense and
decompose graphs for highly connected subgraphs (Lines
5-7); (Step 3) remove frequent edges of unpromising ver-
tices (Lines 8-9); and (Step 4) recursively search new graphs
(Lines 10-11). According to the discussion in the previous
section, we record the intermediate mining results in a set
(set C in Algorithm 2). These intermediate results are used
to avoid extending the same frequent graph twice. Duplicate
extensions are blocked by Line 1 in Algorithm 2. Corollary
1 is used to accelerate the computation of edge connectivity
in the second step, shown in Line 5. The following sections
will introduce how to apply the minimum degree constraint
in the third step and how to decompose graphs efficiently in
the second step.

Algorithm 2 CloseCut(g, D, min sup, K, C, S)

Input: A graph g, a graph dataset D, a minimum support
threshold min sup, connectivity constraint K,
the previously discovered frequent graph set C.

Output: The result set S.

1: if ∃g′ ∈ C, g ⊂ g′ and support(g) = support(g′) then

return;
2: extend g to g′ as much as possible s.t.

support(g) = support(g′);
3: insert g′ to C;
4: g∗ = g′;
5: if ∃go ∈ S, g′ is extended from go then

condense the vertices of go into a single vertex in g∗;
6: decompose(g∗, K, S);
7: scan D once, find frequent edge set X, s.t. ∀e ∈ X

graph g′ ∪ {e} is frequent;

8: for each vertex v in g′, d̂eg(v) ≤ K do

9: remove all edges of v in X;
10: for each frequent graph g′ ∪ {e}, e ∈ X do

11: CloseCut(g′ ∪ {e}, D, min sup, K, C, S);
12: return;

4.4 Minimum Degree Constraint
For any graph, its edge connectivity is less than or equal

to its minimum degree. This property shows that if a graph
satisfies the edge connectivity constraint, it must satisfy the
minimum degree constraint first. We integrate the minimum
degree constraint with the mining process.

Theorem 1. [20] κ(G) ≤ σ(G).

Suppose a newly discovered frequent graph g has its min-
imum degree less than K. We cannot stop searching its su-
pergraphs since they may satisfy the constraint. However,
we can check the maximum degree of vertex v (v ∈ V (g))
in the largest possible frequent supergraph that may be ex-
tended from g. If the degree of v is less than K, we can
safely exclude v from g.

Definition 6 (Shadow Graph). Let G be a frequent
graph and X be a set of edges which can be added to G such
that G∪{e} (e ∈ X) is connected and frequent. Graph G∪X

is called the shadow graph of G, written as Ĝ. The degree of

v (v ∈ V (G)) in the shadow graph of G is written d̂eg(v).

For any vertex v in V (g), d̂eg(v) is the maximum num-
ber of edges that v may have for any potential frequent

supergraph of g. d̂eg(v) monotonically decreases when g is

extended. If d̂eg(v) is less than K, v can be excluded from
g when we extend g. In our implementation of CloseCut,
we do not delete v from g. Instead, we remove all the edges
of v in the frequent edge set X. By doing so, v loses the
ability to have new edges. Since these frequent edges do
not show up in the following extensions of g, we reduce the
computation time.

4.5 Minimum Cut Decomposition
Once a frequent graph is generated in Line 2, Algorithm

2, we will extract highly connected subgraphs in Line 6, Al-
gorithm 2. Algorithm 3 outlines the extraction procedure.

Line 1 gives a termination condition to avoid duplicate de-
composition. Line 3 checks whether the discovered frequent
graph satisfies the constraint. If it does, we put it in the
result set. Otherwise, we recursively decompose it in Lines
6-9 until it meets the stop condition.

Algorithm 3 decompose(g, K, S)

Input: A graph g and connectivity threshold K.
Output: The result set S.

1: if (stopDecompose(g)) then

2: return;
3: if (κ(g) ≥ K) then

4: insert g into S;
5: return;
6: while there exists a cut in g whose size is less than K
7: break g into two parts g1 and g2;
8: decompose(g1, K, S);
9: decompose(g2, K, S);
10: return;

When we break one graph into two halves, one or both
of them may be decomposed somewhere else. Thus, a ter-
mination condition (Line 1, Algorithm 3) is set up so that
we do not decompose the same graph repeatedly. For exam-
ple, assume two frequent graphs g1 and g2 share a common
subgraph go. If we perform a brute force decomposition on
both of them, we may decompose go twice. Therefore, be-
fore g0 is decomposed, we have to check whether this graph
was or would be decomposed elsewhere. A naive solution is
to maintain a database of processed frequent graphs. The
database is checked to verify whether go has been decom-
posed before. Unfortunately, this approach is costly pro-
vided that there are lots of frequent graphs in the dataset.
We propose a better solution to serve as a termination con-
dition.

Theorem 2 (Termination Condition). Let go be a
subgraph of g. If support(go) 6= support(g), one can stop
decomposing go.

Proof. If the support of go is different from g, according
to Lemma 1, there must be another closed graph contain-
ing go. Thus, go can be decomposed when we process that
graph.

Theorem 2 forms a termination condition of decomposi-
tion (Line 1, Algorithm 3). According to Lemma 1, given a
relational graph g, there is one and only one closed graph
which is a supergraph of g and has the same support. There-
fore, any graph will be decomposed at most once in CloseCut.

5. SPLAT: A PATTERN REDUCTION AP-
PROACH

CloseCut extends a candidate graph by inserting new
edges until the candidate graph is not frequent any more. In-
spired by recent work on row enumeration-based approaches
[12] and intersection methods [11], we propose a pattern-
reduction approach, Splat. Instead of enumerating graphs
from small ones to large ones, Splat directly intersects re-
lational graphs and decomposes them to obtain highly con-
nected graphs.

Let pattern g be a highly connected graph in relational
graphs Gi1 , Gi2 , . . ., and Gil

(i1 < i2 < . . . < il). In order
to mine patterns in a larger set {Gi1 , Gi2 , . . ., Gil

, Gil+1
},

Splat intersects g with graph Gil+1
. Let g′ = g ∩ Gil+1

.
The intersection will remove some edges in g that do not
exist in Gil+1

. Thus, the connectivity of the new graph g′

may not satisfy the constraint anymore. If so, we need to
decompose g′ into smaller highly connected subgraphs. We
progressively reduce the size of candidate graphs by inter-
section and decomposition. Finally, it may become zero. We
call this approach a pattern-reduction approach.

...

Gi1 Gi2 Gil

projection plane

projecting

...

Figure 6: Splat

Figure 6 depicts the concept of Splat. Imagine there
is a parallel light casting from the right perpendicularly to
relational graphs and each edge blocks some light. The fre-
quent edges will be very dark on the projection plane. Since
we are only concerned about highly connected graphs, fre-
quent edges with low connectivity will be removed from the
plane. By inserting and deleting different relational graphs
between the light and the projection plane, Splat is able
to discover all the graph patterns satisfying the connectiv-
ity constraint. When the size of patterns on the projection
plane is smaller than K, Splat stops intersecting it with new
relational graphs since it will not produce new patterns.

Algorithm 4 Splat(g, D, l, min sup, K, S)

Input: A graph g, a graph dataset D, an index l, a minimum
support threshold min sup, connectivity constraint K.

Output: The result set S.

1: check whether a discovered graph g′ exists s.t. g = g′;
2: if such pattern exists then return;
3. if support(g) ≥ min sup then insert g into S;
4: for each Gm ∈ D, l < m ≤ n do

5: g′ = g ∩ Gm;
6: K-decompose g′, put highly connected subgraphs in Q;
7: for each graph q ∈ Q do

8: Splat(q, D, m, min sup, K, S);
9: return;

Algorithm 4 describes the framework of Splat. Line 1
checks whether a discovered graph g exists in the result
set. If g exists, Splat need not work on it since g will not
generate new closed highly connected graphs, which can be
proved using a similar framework in [12]. Lines 4-8 intersect
the graph with the m-th relational graph and perform K-
decomposition on it. For each newly discovered graph, we
repeat the above procedure until we finish all the relational
graphs or there is no new frequent highly connected graphs.

When the edge connectivity is higher, Splat will perform
better. In that case, Splat shrinks the candidate graphs
quickly by removing lots of low cut edges. However, the
performance of Splat may deteriorate when the number of
relational graphs increases because it has to enumerate the
combination of relational graphs.

6. EXPERIMENTAL RESULTS
We conducted a comprehensive performance study on both

synthetic and real datasets. The synthetic data is controlled
by a set of parameters that allow us to test the performance
under different conditions. The real dataset is obtained from
microarray experiments. Through the experiments, we illus-
trate the pros and cons of CloseCut and Splat according
to different mining requests.

All the experiments are done on a 2.5GHZ Intel Xeon
server with 3GB main memory, running RedHat 9.0. Both
CloseCut and Splat are implemented in C++ with STL
library support and compiled by g++ with -O3 optimiza-
tion.

6.1 Synthetic Dataset

Notation Parameter

N Number of relational graphs
O Number of objects
S Number of seed graphs
I Maximum size of seed graphs (in vertices)
T Average number of seed graphs
D Average density in seed graphs
d Average density of noise edges

Table 1: Parameters of Synthetic Data

The synthetic datasets have a set of parameters for users
to specify: the number of relational graphs (N), the number
of objects (O), the number of seed graphs (S), the average
size of seed graphs (I), the average number of seed graphs
in relational graphs (T), the average density of seed graphs
(D), and the average density of noise edges in relational
graphs (d). Density is the average degree divided by the
number of vertices. Table 1 summarizes these parameters.

Synthetic data is generated as follows. First, we generate
a set of seed graphs randomly. Seed graphs are used later to
form the relational graphs. The total number of seed graphs
is S. Their size (the number of vertices) is randomly selected
between 1 and I. Let V be the number of vertices in a seed
graph. We randomly label its vertices and assign kV/2 edges
to it. The seed graph does not necessarily have exactly
k edges for each vertex. Variable k is a gaussian random
variable with mean D. Next, we generate the relational
graphs. The numbers of objects in relational graphs are
the same, specified by O. We randomly select seed graphs
and embed them in the relational graphs. The number of
seed graphs per relational graph is determined by a normal
distribution with mean T . Finally, we randomly assign a
set of noise edges to each relational graph. The number of
noise edges per graph also follows a normal distribution with
mean d × O. When we increase the average number of seed
graphs per graph, these seed graphs will be merged together
to form larger irregular frequent graphs.

For a dataset which has 30 relational graphs of 10,000
distinct objects, 1,000 seed graphs (each seed graph has
at most 40 vertices and an average density 0.6), 500 seed
graphs per relational graph, and 100 noise edges per object
(0.005×10, 000×2), we represent it as N30O10kS1kT500I40
D0.6d0.005. In the following tests, we will change some ma-
jor parameters including minimum support, the number of
seed graphs, and average density to show the performance
of CloseCut and Splat.

102

103

104

 6 8 10 12 14 16

R
un

tim
e

(s
ec

on
ds

)

Absolute Support

CloseCut with K=10
CloseCut with K=20

Splat with K=10
Splat with K=20

Figure 7: Runtime vs. Support

Figure 7 shows the runtime of CloseCut and Splat for
dataset N30O10kS1kT500I40D0.6d0.005 with varied mini-
mum supports. The settings of N and O are typical: a small
set of graphs with large number of nodes. Each graph in this
dataset has highly connected seed graphs and these seed
graphs overlap with each other. The average vertex number
of seed graphs is 20 in this dataset. As shown in the figure,
CloseCut and Splat have the similar performance when
the support is very high. The high support threshold filters
out lots of infrequent edges and noise edges. Thus, both
algorithms complete very fast. When the support is lowered
down, CloseCut outperforms Splat because Splat has to
enumerate lots of infrequent highly connected subgraphs,
which will eventually be discarded. However, when the sup-
port is very low, the situation is reversed. CloseCut cannot
prune effectively using the minimum degree constraint. On
the contrary, Splat can use the connectivity constraint to
remove many frequent, but low minimum cut edges. There-
fore, Splat outperforms CloseCut, although both of them
take a long time to finish. This explanation is also justi-
fied by the fact that the the runtime difference of K = 10
and K = 20 in Splat is greater than that in CloseCut.
That means Splat takes more advantage of the connectivity
constraint than CloseCut.

Having verified the runtime of CloseCut and Splat over
varied supports, we then check their scalability over the
number of seeds. The increment of this parameter, to-
gether with the average number of seeds per graph, will add
more highly connected graphs into the dataset, thus making
the mining more challenging. We increase the seed graph
number from 500 to 1, 500. Figure 8 shows the runtime
of these two algorithms for dataset N30O10kI40D0.6d0.005.
The support threshold is set at 10. As shown in the figure,
CloseCut and Splat are scalable to the number of seed
graphs.

Figure 9 shows the scalability of these two algorithms with
different density settings. When seed graphs become denser
and larger in terms of edges, the number of patterns will
increase and more graphs will satisfy the connectivity con-

102

103

104

 400 600 800 1000 1200 1400 1600

R
un

tim
e

(s
ec

on
ds

)

Number of Seed Graphs

CloseCut with K=10
CloseCut with K=20

Splat with K=10
Splat with K=20

Figure 8: Runtime vs. Number of Seed Graphs

102

103

104

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
un

tim
e

(s
ec

on
ds

)

Average Density of Seed Graphs

CloseCut with K=10
CloseCut with K=20

Splat with K=10
Splat with K=20

Figure 9: Runtime vs. Density

straint. Both CloseCut and Splat scale well in this case.

6.2 Real Dataset
The real data consists of 32 microarray expression sets

measuring yeast genome-wide expression profiles under dif-
ferent types of perturbations, e.g., cell cycle, amino acid
starvation, heat shock, and osmotic pressure. Each dataset
includes the expression values of 6661 yeast genes over mul-
tiple conditions. Since gene expression values generated by
different platforms are not comparable, we cannot calculate
their correlation across all the datasets directly. Instead,
we model each dataset as a relational graph, where nodes
represent genes, and we connect two genes with an edge if
they have high correlation in their expression profiles [5, 16].
On average, each graph have around 600, 000 edges. In gen-
eral, genes with correlated expression profiles are likely to
be functionally related. We applied CloseCut and Splat
in this microarray dataset and mined recurrent graphs with
different connectivity constraints.

In Figure 10, we plot the runtime of CloseCut and Splat
in this microarray dataset. For this dataset, Splat outper-
forms CloseCut when the absolute support is below 16.
However, CloseCut has better performance when the min-
imum support is high and the edge connectivity is low. For
example, when the support threshold is set at 17 and the
minimum connectivity is 2, Splat needs 2,748 seconds to
finish the mining. If the connectivity is lowered down to
1, Splat cannot complete the task in hours. In both cases,
CloseCut only takes less than 300 seconds. Compared with
its performance in synthetic datasets, CloseCut does not
achieve a similar speedup when the minimum cut threshold
is increased. We found that this dataset has lots of large fre-
quent tree patterns and many vertices in the center of these

102

103

104

 13 14 15 16 17 18 19 20

R
un

tim
e

(s
ec

on
ds

)

Absolute Support

CloseCut with K=3
CloseCut with K=5

Splat with K=3
Splat with K=5

Figure 10: Runtime vs. Support

patterns have high degrees. Therefore, CloseCut cannot
remove these nodes quickly using the minimum degree con-
straint.

In summary, CloseCut and Splat have their own strength
for different problem settings. CloseCut runs faster when
the support is high and the connectivity constraint is low.
On the contrary, Splat has better performance when the
support is low and the connectivity is high.

100

101

102

103

104

 13 14 15 16 17 18 19 20

N
um

be
r

of
 P

at
te

rn
s

Absolute Support

Connectivity K=1
Connectivity K=3
Connectivity K=5

Figure 11: Number of Highly Connected Patterns

Figure 11 shows the number of highly connected graphs
mined under different connectivity constraints. As shown
in the figure, the number of patterns is reduced significantly
when we change the connectivity threshold from 1 to 5. The
result set produced from our algorithm is not only smaller
than the set of frequent graphs, but also smaller than the
set of closed frequent graphs.

100

101

102

 13 14 15 16 17 18 19 20

T
he

 L
ar

ge
st

 P
at

te
rn

 S
iz

e

Absolute Support

Connectivity K=1
Connectivity K=3
Connectivity K=5

Figure 12: Size of the Largest Patterns

Figure 12 shows the size of the largest patterns discovered
for different connectivity thresholds. The size of patterns

is measured in the number of edges. We have small-size
patterns when the connectivity constraint is enhanced.

Figures 13-16 depict examples of the most frequent graphs
we discovered with edge connectivity equal to 3. The sup-
port of these patterns is all above 19. These patterns have
strong biological meanings as verified by biologists.

YML132W YIR043C

YJR161C

YGR295C

YFL062W

YNL336W

YBR302C

YDL248W

Figure 13: Genes Related with Subtelomerically En-

coded Proteins

Except that we have no knowledge about gene YIR043C in
the pattern shown in Figure 13, all of the rest seven genes be-
long to a family of conserved, often subtelomerically encoded
proteins. These seven genes are located closely to each other
in the chromosome. Below in the parenthesis are the com-
mon names of these genes, and one can see that they differ
only in the last number: YML132W (COS3), YIR043C (un-
known), YJR161C (COS5), YGR295C (COS6), YFL062W
(COS4), YDL248W (COS7), YBR302C (COS2), and YNL336W
(COS1).

YLR467W

YLL067C

YLL066C

YDR545W

YJL225C

Figure 14: Genes Having Helicase Activity

All the five genes shown in Figure 14, YLR467W, YJL225C,
YDR545W, YLL066C, and YLL067C, have helicase activ-
ity. However, the exact biological pathways, in which these
genes are involved, are unknown so far.

YNL182C

YOL077C

YDR496C

YKL009W
YNL248C

Figure 15: Genes Involved in Ribosomal Biogenesis

The five genes in Figure 15 are mainly involved in riboso-
mal biogenesis. Genes YKL009W, YNL182C, and YOL077C

YLL011W

YLR222C

YLR276C
YML093W

YPL146C

YOR206W

YKL172W

Figure 16: Genes Involved in rRNA Processing

are involved in ribosomal large subunit assembly and main-
tenance; YNL248C is involved in transcription of riboso-
mal DNA; and YDR496C has unknown function, but is pre-
dicted to be involved in ribosomal RNA processing in our
own study. All genes in Figure 16 are involved in rRNA
processing, except that YPL146C has unknown function.

7. RELATED WORK
A general review on the recent progress of graph-based

data mining is given by Washio and Motoda [19]. The Apri-
ori property is applied to mine frequent graphs: Inokuchi
et al. [9], Kuramochi and Karypis [10], and Vanetik et
al. [17]. Borgelt and Berthold [1], Yan and Han [23], and
Huan et al. [8] apply the pattern-growth approach to di-
rectly mine frequent subgraphs. Holder et al. [7] adopt the
principle of minimum description length for mining approxi-
mate frequent graphs. In this paper, we introduce a different
problem scenario where connectivity is used together with
frequency to identify highly connected recurrent structures.
Furthermore, the relational graph we studied is very special
in comparison with the general graph proposed by previous
work. Each node in a relational graph has a distinct label.
This special property leads to a different but more efficient
design in mining large graph patterns.

The minimum cut criterion in finding highly connected
components has been introduced in various fields. It is pre-
sented by Wu and Leahy [21] as an optimal graph theo-
retic approach for data clustering in the image segmenta-
tion problem. Their approach is further modified by Shi and
Malik [13] using a normalized minimum cut measurement.
Flake et al. discuss how to apply a framework of maximum
flow/minimum cut to identify members of web communities
efficiently [6]. These studies focus on clustering objects in
one graph, instead of a set of graphs. It is unknown whether
these techniques are still valid or applicable in the context
of mining multiple graphs. For example, in the design of
pattern-growth approach, it is not clear how to extend a
frequent graph with concerns on the connectivity constraint
and when to stop decomposing a candidate graph. So far,
we are not aware of any previous work on these issues.

8. CONCLUSIONS
In this paper, we introduced a new graph mining prob-

lem: finding closed frequent graphs with connectivity con-
straints in relational graphs. We adopted the concept of
edge connectivity and applied graph theoretic results, graph
condensation and decomposition, in our algorithm design.
Two approaches were developed to meet different mining de-
mands: CloseCut, a pattern-growth approach, and Splat,

a pattern-reduction approach. CloseCut has better perfor-
mance on patterns with high support and low connectivity.
On the contrary, Splat can remove frequent graphs with low
connectivity in the early stage of mining, thus achieve better
performance for the high connectivity constraint. Our meth-
ods successfully mined interesting patterns from multiple bi-
ological networks. Through our study, we demonstrated the
applicability of frequent graph mining in biological research.

9. REFERENCES
[1] C. Borgelt and M. Berthold. Mining molecular

fragments: Finding relevant substructures of
molecules. In Proc. 2002 Int. Conf. on Data Mining
(ICDM’02), pages 211–218, 2002.

[2] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A
maximal frequent itemset algorithm for transactional
databases. In Proc. 2001 Int. Conf. Data Engineering
(ICDE’01), pages 443–452, 2001.

[3] A Butte, P. Tamayo, D. Slonim, T. Golub, and
I. Kohane. Discovering functional relationships
between rna expression and chemotherapeutic
susceptibility. In Proc. of the National Academy of
Science, volume 97, pages 12182–12186, 2000.

[4] C. Chekuri, A. Goldberg, D. Karger, M. Levine, and
C. Stein. Experimental study of minimum cut
algorithms. In Proc. of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’97), pages
324–333, 1997.

[5] M. Eisen, P. Spellman, P. Brown, and D. Botstein.
Cluster analysis and display of genome-wide
expression patterns. In Proc. of the National Academy
of Science, volume 95, pages 14863–14868, 1998.

[6] G. Flake, S. Lawrence, and C. Giles. Efficient
identification of web communities. In Proc. 2000 ACM
Int. Conf. Knowledge Discovery and Data Mining
(KDD’00), pages 150–160, Boston, MA, August 20–23
2000.

[7] L. Holder, D. Cook, and S. Djoko. Substructure
discovery in the subdue system. In Proc. AAAI’94
Workshop on Knowledge Discovery in Databases
(KDD’94), pages 169 – 180, 1994.

[8] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink,
J. Prins, and A. Tropsha. Mining spatial motifs from
protein structure graphs. In Proc. of the 8th Annual
Int. Conf. on Research in Computational Molecular
Biology (RECOMB’04), pages 308–315.

[9] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data. In Proc. 2000
European Symp. Principle of Data Mining and
Knowledge Discovery (PKDD’00), pages 13–23, 1998.

[10] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proc. 2001 Int. Conf. Data Mining
(ICDM’01), pages 313–320, 2001.

[11] T. Mielikainen. Intersecting data to closed sets with
constraints. In Proc. of the First ICDM Workshop on
Frequent Itemset Mining Implementation (FIMI’03),
2003.

[12] F. Pan, G. Cong, A. Tung, J. Yang, and M. Zaki.
Carpenter: Finding closed patterns in long biological
datasets. In Proc. 2003 ACM Int. Conf. Knowledge
Discovery and Data Mining (KDD’03), 2003.

[13] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22(8):888–905, 2000.

[14] V. Spirin and L. Mirny. Protein complexes and
functional modules in molecular networks. In Proc. of
the National Academy of Science, volume 100, pages
12123–12128, 2003.

[15] M. Stoer and F. Wagner. A simple min-cut algorithm.
Journal of the ACM, 44:585–591, 1997.

[16] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu,
S. Kitareewan, E. Dmitrovsky, E. Lander, and
T. Golub. Interpreting patterns of gene expression
with self-organizing maps: methods and application to
hematopoietic differentiation. In Proc. of the National
Academy of Science, volume 96, pages 2907–2912,
1999.

[17] N. Vanetik, E. Gudes, and S. E. Shimony. Computing
frequent graph patterns from semistructured data. In
Proc. 2002 Int. Conf. on Data Mining (ICDM’02),
pages 458–465, 2002.

[18] J. Wang, J. Han, and J. Pei. Closet+: Searching for
the best strategies for mining frequent closed itemsets.
In Proc. 2003 ACM Int. Conf. Knowledge Discovery
and Data Mining (KDD’03), pages 236–245, 2003.

[19] T. Washio and H. Motoda. State of the art of
graph-based data mining. SIGKDD Explorations,
5:59–68, 2003.

[20] D. West. Introduction to Graph Theory. Prentice Hall,
Cambridge, MA, 2000.

[21] Z. Wu and R. Leahy. An optimal graph theoretic
approach to data clustering: Theory and its
application to image segmentation. IEEE Trans. on
Pattern Analysis and Machine Intelligence,
15:1101–1113, 1993.

[22] X. Yan and J. Han. gSpan: Graph-based substructure
pattern mining. In Proc. 2002 Int. Conf. on Data
Mining (ICDM’02), pages 721–724, 2002.

[23] X. Yan and J. Han. Closegraph: Mining closed
frequent graph patterns. In Proc. 2003 ACM Int.
Conf. Knowledge Discovery and Data Mining
(KDD’03), pages 286–295, 2003.

[24] X. Yan, P. Yu, and J. Han. Graph indexing: A
frequent structure-based approach. In Proc. 2004
ACM Int. Conf. Management of Data (SIGMOD’04),
pages 335–346, 2004.

[25] M. Zaki and K. Gouda. Fast vertical mining using
diffsets. In Proc. 2003 ACM Int. Conf. Knowledge
Discovery and Data Mining (KDD’03), pages 326–335,
2003.

