
Density-Based Clustering over an Evolving Data Stream with Noise

Feng Cao ∗ Martin Ester† Weining Qian ‡ Aoying Zhou §

Abstract

Clustering is an important task in mining evolving data
streams. Beside the limited memory and one-pass con-
straints, the nature of evolving data streams implies
the following requirements for stream clustering: no as-
sumption on the number of clusters, discovery of clus-
ters with arbitrary shape and ability to handle outliers.
While a lot of clustering algorithms for data streams
have been proposed, they offer no solution to the combi-
nation of these requirements. In this paper, we present
DenStream, a new approach for discovering clusters in
an evolving data stream. The “dense” micro-cluster
(named core-micro-cluster) is introduced to summarize
the clusters with arbitrary shape, while the potential
core-micro-cluster and outlier micro-cluster structures
are proposed to maintain and distinguish the potential
clusters and outliers. A novel pruning strategy is de-
signed based on these concepts, which guarantees the
precision of the weights of the micro-clusters with lim-
ited memory. Our performance study over a number of
real and synthetic data sets demonstrates the effective-
ness and efficiency of our method.
Keywords: Data mining algorithms, Density based
clustering, Evolving data streams.

1 Introduction

In recent years, a large amount of streaming data, such
as network flows, sensor data and web click streams have
been generated. Analyzing and mining such kinds of
data have been becoming a hot topic [1, 2, 4, 6, 10, 14].
Discovery of the patterns hidden in streaming data
imposes a great challenge for cluster analysis.

The goal of clustering is to group the streaming data

∗caofeng@fudan.edu.cn, Department of Computer Science and

Engineering, Fudan University.
†ester@cs.sfu.ca, School of Computing Science, Simon Fraser

University. This work is partially done when visiting the Intelli-

gent Information Proseccing Lab, Fudan Univesity.
‡wnqian@fudan.edu.cn, Department of Computer Science and

Engineering, Intelligent Information Processing Laboratory, Fu-

dan University. He is partially supported by NSFC under Grant
No. 60503034.

§ayzhou@fudan.edu.cn, Department of Computer Science and

Engineering, Intelligent Information Processing Laboratory, Fu-
dan University.

into meaningful classes. The data stream for mining
often exists over months or years, and the underlying
model often changes (known as evolution) during this
time [1, 18]. For example, in network monitoring, the
TCP connection records of LAN (or WAN) network
traffic form a data stream. The patterns of network
user connections often change gradually over time. In
environment observation, sensors are used to monitor
the pressure, temperature and humidity of rain forests,
and the monitoring data forms a data stream. A forest
fire started by lightning often changes the distribution
of environment data.

Evolving data streams lead to the following require-
ments for stream clustering:

1. No assumption on the number of clusters. The
number of clusters is often unknown in advance.
Furthermore, in an evolving data stream, the num-
ber of natural clusters is often changing.

2. Discovery of clusters with arbitrary shape. This
is very important for many data stream applica-
tions. For example, in network monitoring, the
distribution of connections is usually irregular. In
environment observation, the layout of an area with
similar environment conditions could be any shape.

3. Ability to handle outliers. In the data stream
scenario, due to the influence of various factors,
such as electromagnetic interference, temporary
failure of sensors, weak battery of sensors, etc.,
some random noise appears occasionally.

We note that since data stream applications natu-
rally impose a limited memory constraint, it becomes
more difficult to provide arbitrary-shaped clustering re-
sults using conventional algorithms. (1) There is no
global information about data streams, which is of-
ten required in conventional density based algorithms
[3, 8, 13]. (2) Clusters with arbitrary shape are often
represented by all the points in the clusters [8, 12, 13],
which is often unrealistic in stream applications due
to the memory constraint. (3) Previously proposed
streaming algorithms, e.g., CluStream [1], often produce
spherical clusters, because the distance is adopted as the
measurement.

Furthermore, because of the dynamic nature of
evolving data streams, the role of outliers and clusters
are often exchanged, and consequently new clusters
often emerge, while old clusters fade out. It becomes
more complex when noise exists. For example, in
CluStream [1], the algorithm continuously maintains a
fixed number of micro-clusters. Such an approach is
especially risky when the data stream contains noise.
Because a lot of new micro-clusters will be created for
the outliers, many existing micro-clusters will be deleted
or merged. Ideally, the streaming algorithm should
provide some mechanism to distinguish the seeds of new
clusters from the outliers.

In this paper, we propose DenStream, a novel
algorithm for discovering clusters of arbitrary shape
in an evolving data stream, whose salient features are
described below.

• The core-micro-cluster synopsis is designed to sum-
marize the clusters with arbitrary shape in data
streams.

• It includes a novel pruning strategy, which pro-
vides opportunity for the growth of new clusters
while promptly getting rid of the outliers. Thus,
the memory is limited with the guarantee of the
precision of micro-clusters.

• An outlier-buffer is introduce to separate the pro-
cessing of the potential core-micro-clusters and
outlier-micro-clusters, which improves the effi-
ciency of DenStream.

• Due to its adaptability to the change of clusters
and the ability to handle outliers in data streams,
DenStream achieves consistently high clustering
quality.

The remainder of this paper is organized as follows:
Section 2 surveys related work. Section 3 introduces
basic concepts. In Section 4, we propose the DenStream
algorithm. In Section 5, we discuss some detailed
techniques of DenStream. Section 6 describes the
performance study. Section 7 concludes this paper.

2 Related work

Various methods for discovering clusters of arbitrary
shape have been proposed in the literature [3, 8, 12,
13, 17]. These methods assume that all the data
are resident on hard disk, and one can get global
information about the data at any time. Hence, they are
not applicable for processing data streams which require
a one-pass scan of data sets and clustering via local
information. IncrementalDBSCAN [9] is an incremental
method for data warehouse applications; however, it can

only handle a relatively stable environment but not fast
changing streams. In particular, it cannot deal with the
case with limited memory.

Recently, the clustering of data streams has been
attracting a lot of research attention. Previous methods,
one-pass [4, 10, 11] or evolving [1, 2, 5, 18], do not
consider that the clusters in data streams could be of
arbitrary shape. In particular, their results are often
spherical clusters.

One-pass methods typically make the assumption
of the unique underlying model of the data stream,
i.e., they cannot handle evolving data distributions.
These algorithms [4, 10, 11] adopt a divide-and-conquer
strategy and achieve a constant-factor approximation
result with small memory. A subroutine called LO-
CALSEARCH is performed every time when a new
chunk arrives to generate the cluster centers of the
chunk. The VFKM algorithm [7] extends the k -means
algorithm by bounding the learner’s loss as a function
of the number of examples in each step.

The evolving approaches view the behavior of the
stream as it may evolve over time. The problem with
CluStream [1] is the predefined constant number of
micro-clusters. For example, suppose it is set to ten
times of the number of input clusters [1], different “nat-
ural” clusters may be merged. Moreover, since a variant
of k -means is adopted to get the final result, a “natu-
ral” cluster may be split into two parts, because the
distance is adopted as the measurement. HPStream
[2] introduces the concept of projected cluster to data
streams. However, it cannot be used to discover clus-
ters of arbitrary orientations in data streams. Although
some simple mechanism is introduced in [1, 2] to deal
with outliers, the outliers still greatly influence their
formation of micro-clusters. An artificial immune sys-
tem based clustering approach was proposed in [15], but
they didn’t give the memory bound which is important
for stream applications. The problem of clustering on
multiple data streams was addressed in [5, 18].

3 Fundamental Concepts

Cluster partitions on evolving data streams are often
computed based on certain time intervals (or windows).
There are three well-known window models: landmark
window, sliding window and damped window.

We consider the problem of clustering a data stream
in the damped window model, in which the weight of
each data point decreases exponentially with time t via
a fading function f(t) = 2−λ·t, where λ > 0. The
exponentially fading function is widely used in temporal
applications where it is desirable to gradually discount
the history of past behavior. The higher the value of λ,
the lower importance of the historical data compared to

Figure 1: Representation by c-micro-clusters

more recent data. And the overall weight of the data
stream is a constant W = v(Σt=tc

t=0 2−λt) = v
1−2−λ , where

tc (tc →∞) is the current time, and v denotes the speed
of stream, i.e., the number of points arrived in one unit
time.

In static environment, the clusters with arbitrary
shape are represented by all the points which belong to
the clusters. Therefore, a naive approach would be to
maintain all the points in memory. When a clustering
request arrives, these points could be clustered by the
DBSCAN algorithm [8] to get the final result. The
clustering result is a group of (weighted) core objects
C (see Definition 3.1) with corresponding cluster labels,
which guarantee that the union of the ε neighborhood
of C cover the density area (see Definition 3.2).

Definition 3.1. (core object) A core object is defined
as an object, in whose ε neighborhood the overall weight
of data points is at least an integer µ.

Definition 3.2. (density-area) A density area is de-
fined as the union of the ε neighborhoods of core objects.

However, it is unrealistic to provide such a precise
result, because in a streaming environment the memory
is limited (relative to the stream length). Therefore,
we resort to an approximate result and introduce a
summary representation called core-micro-cluster.

Definition 3.3. (core-micro-cluster) A core-micro-
cluster, abbr. c-micro-cluster, at time t is defined as
CMC(w, c, r) for a group of close points pi1 , ..., pin

with time stamps Ti1 , ..., Tin
. w =

∑n
j=1 f(t − Tij

),

w ≥ µ, is the weight. c =
Pn

j=1 f(t−Tij
)pij

w is the center.

r =
Pn

j=1 f(t−Tij
)dist(pij

,c)

w , r ≤ ε, is the radius, where
dist(pij , c) denotes the Euclidean distance between point
pij and the center c.

Notice that the weight of c-micro-clusters must be above
or equal to µ and the radius must be below or equal
to ε. In such a sense, the c-micro-cluster is a “dense”
micro-cluster. Because of the constraint on radius, Nc,
the number of c-micro-clusters is much larger than the
number of natural clusters. On the other hand, it is

significantly smaller than the number of points in the
data stream due to its constraint on weight. Since
each point is uniquely assigned to one of the c-micro-
clusters, Nc is below or equal to W

µ . In addition, when
a clustering request arrives, each c-micro-cluster will be
labeled to get the final result, as illustrated in Figure 1.

The clusters with arbitrary shape in data streams
are described by a set of non-redundant c-micro-
clusters. In fact, {cmc1, cmc2, ..., cmcNc

}, the set of
c-micro-clusters are supposed to correspond to the cov-
erage of the core objects in the clusters. And all of them
are necessary to cover the core objects.

In an evolving data stream, the role of clusters
and outliers often exchange, and any c-micro-cluster is
formed gradually as the data stream proceeds. There-
fore, we introduce the structures of potential c-micro-
clusters and outlier-micro-clusters for incremental com-
putation, which are similar to those in [2]. The main
differences between them are their different constraints
on weight, w ≥ βµ and w < βµ, respectively.

Definition 3.4. (potential c-micro-cluster) A poten-
tial c-micro-cluster, abbr. p-micro-cluster, at time
t for a group of close points pi1 , ..., pin

with time
stamps Ti1 , ..., Tin

is defined as {CF 1, CF 2, w}. w =∑n
j=1 f(t − Tij

), w ≥ βµ, is the weight. β, 0 < β ≤ 1,
is the parameter to determine the threshold of outlier
relative to c-micro-clusters. CF 1 =

∑n
j=1 f(t − Tij)pij

is the weighted linear sum of the points. CF 2 =∑n
j=1 f(t − Tij)p

2
ij

is the weighted squared sum of the
points.

The center of p-micro-cluster is c = CF 1

w . And

the radius of p-micro-cluster is r =
√
|CF 2|

w − (|CF 1|
w)2

(r ≤ ε).

Definition 3.5. (outlier micro-cluster) An outlier
micro-cluster, abbr. o-micro-cluster, at time t for
a group of close points pi1 , ..., pin with time stamps
Ti1 , ..., Tin is defined as {CF 1, CF 2, w, to}. The defini-
tions of w, CF 1, CF 2, center and radius are the same
as the p-micro-cluster. to = Ti1 denotes the creation
time of the o-micro-cluster, which is used to determine
the life span of the o-micro-cluster. However w < βµ.
That is, because the weight is below the threshold of out-
lier, the micro-cluster corresponds to outliers.

Property 3.1. p-micro-clusters and o-micro-clusters
can be maintained incrementally.

Proof. Consider a p-micro-cluster cp = (CF 2, CF 1, w),
if no points are merged by cp for time interval δt,
cp = (2−λδt · CF 2, 2−λδt · CF 1, 2−λδt · w). If point p is
merged by cp, cp = (CF 2 + p2, CF 1 + p, w +1). Similar
procedure can prove the property of o-micro-clusters.

Algorithm 1 Merging (p)
1: Try to merge p into its nearest p-micro-cluster cp;
2: if rp (the new radius of cp) ≤ ε then
3: Merge p into cp;
4: else
5: Try to merge p into its nearest o-micro-cluster co;
6: if ro (the new radius of co) ≤ ε then
7: Merge p into co;
8: if w (the new weight of co) > βµ then
9: Remove co from outlier-buffer and create a

new p-micro-cluster by co;
10: end if
11: else
12: Create a new o-micro-cluster by p and insert it

into the outlier-buffer;
13: end if
14: end if

4 Clustering Algorithm

Our clustering algorithm can be divided into two parts:
(1) online part of micro-cluster maintenance, (2) offline
part of generating the final clusters, on demand by the
user.

4.1 Micro-cluster Maintenance In order to dis-
cover the clusters in an evolving data stream, we main-
tain a group of p-micro-clusters and o-micro-clusters in
an online way. All the o-micro-clusters are maintained
in a separate memory space, say an outlier-buffer. This
is based on the observation that most of the new points
belong to existing clusters, and therefore can be ab-
sorbed by existing p-micro-clusters.

When a new point p arrives, the procedure of
merging is described below (see Algorithm 1 for detail).

1. At first, we try to merge p into its nearest p-micro-
cluster cp. If rp, the new radius of cp, is below or
equal to ε, merge p into cp. This could be achieved
by the incremental property of p-micro-clusters.

2. Else, we try to merge p into its nearest o-micro-
cluster co. If ro, the new radius of co, is below or
equal to ε, merge p into co. And then, we check w
the new weight of co. If w is above βµ, it means
that co has grown into a potential c-micro-cluster.
Therefore, we remove co from the outlier-buffer and
create a new p-micro-cluster by co.

3. Otherwise we create a new o-micro-cluster co by p
and insert co into the outlier-buffer. This is because
p does not naturally fit into any existing micro-
cluster. The p may be an outlier or the seed of a
new micro-cluster.

For each existing p-micro-cluster cp, if no new point
is merged into it, the weight of cp will decay gradually.
If the weight is below βµ, it means that cp becomes an
outlier, and it should be deleted and its memory space
released for new p-micro-clusters. Thus, we need to
check the weight of each p-micro-cluster periodically.
The problem becomes how to determine the periods
of checking. In fact, it does not need to check too
frequently. Because the minimal time span for a p-
micro-cluster fading into an outlier is

(4.1) Tp = d 1
λ

log(
βµ

βµ− 1
)e,

which is determined by the equation 2−λTpβµ + 1 =
βµ. Therefore, we check each p-micro-cluster every Tp

time periods. This checking strategy ensures that the
maximal number of p-micro-clusters in memory is W

βµ ,
as the overall weight of data streams is a constant W .

The problem is that the number of o-micro-clusters
may continuously increase as data streams proceed. It
becomes worse when a lot of outliers exist. On the other
hand, we need to keep the o-micro-clusters which will
grow into p-micro-clusters, because at the initial stage of
any new cluster its weight is relatively small compared
with existing clusters. So we should provide opportunity
for an o-micro-cluster to grow into a p-micro-cluster,
while promptly getting rid of the o-micro-cluster which
is a real outlier. Ideally, we should wait infinite time
to determine whether an o-micro-cluster could become
a p-micro-cluster or not. However, this strategy will
cost a lot of memory. Therefore, we introduce an
approximate method to distinguish these two types of o-
micro-clusters, and periodically prune the “real” outlier
micro-clusters in the outlier-buffer.

It is natural to check each o-micro-cluster every Tp

time periods. At these time points, we compare the
weight of each o-micro-cluster with its lower limit of
weight (denoted as ξ). If the weight of an o-micro-
cluster is below its lower limit of weight, that means
the o-micro-cluster may not grow into a p-micro-cluster
from current aspect. And we can safely delete it from
the outlier-buffer. The lower limit of weight is defined
as

(4.2) ξ(tc, to) =
2−λ(tc−to+Tp) − 1

2−λTp − 1
,

which is a function of tc (i.e., current time) and to
(i.e., the creation time of the o-micro-cluster). to is
maintained in the t field of the o-micro-cluster. When
tc = to, i.e., at the creation time of the o-micro-cluster,
ξ = 1. As time elapses, ξ increases and lim

tc→∞
ξ(tc) =

1
1−2−λTp = βµ. That is, the longer an o-micro-cluster
exists, the larger its weight is expected to be. The
detailed procedure is described in Algorithm 2.

Algorithm 2 DenStream (DS, ε, β, µ, λ)

1: Tp = d 1
λ log(βµ

βµ−1)e;
2: Get the next point p at current time t from data

stream DS;
3: Merging(p);
4: if (t mod Tp)=0 then
5: for each p-micro-cluster cp do
6: if wp(the weight of cp)< βµ then
7: Delete cp;
8: end if
9: end for

10: for each o-micro-cluster co do
11: ξ = 2−λ(t−to+Tp)−1

2−λTp−1
;

12: if wo(the weight of co)< ξ then
13: Delete co;
14: end if
15: end for
16: end if
17: if a clustering request arrives then
18: Generating clusters;
19: end if

Obviously, the strategy of pruning o-micro-clusters
may introduce some error on the weights of o-micro-
clusters and p-micro-clusters. Fortunately, we can
guarantee that for any p-micro-cluster cp, if the current
exact weight of cp (the weight of all data stream points
in the radius of cp, i.e., without summarizing) is above
βµ, it must exist in the outlier-buffer or the group of
p-micro-clusters. And if the current exact weight of cp

is above 2βµ, it must exist in the group of p-micro-
clusters.

Let we denote the exact weight of co (or cp), w
denote the weight maintained by co (or cp), to denote
the creation time of co (or cp), and T denote the elapsed
time from the very beginning of the data stream:

Lemma 4.1. Whenever an o-micro-cluster co is pruned,
we ≤ βµ.

Proof. Depend on the existence of micro-clusters lo-
cated in co before its creation or not, there are two cases:

1. If there is no micro-clusters located in co before,
we = w. According to the pruning rule, we <
2−λ(tc−to+Tp)−1

2−λTp−1
< βµ;

2. If there is micro-cluster cx located in co be-
fore, according to the pruning rule, the maximal
weight of cx is βµ when it is pruned. Therefore,
we < w + 2−λ(tc−to+Tp)βµ ≤ 2−λ(tc−to+Tp)−1

2−λTp−1
+

2−λ(tc−to+Tp)βµ ≤ βµ.

In these two cases, we get that we ≤ βµ whenever co is
deleted.

Lemma 4.2. For any p-micro-cluster cp, w ≤ we ≤
w + 2−λ(tc−to)βµ.

Proof. If cp is created at the very beginning of data
stream, w = we. Otherwise there are maybe some
micro-clusters located in cp before the creation of cp.
From Lemma 4.1, we infer that the exact weight of
cp is at most βµ when the last pruning took place,
and it fades into 2−λ(tc−to)βµ currently. Therefore,
we ≤ w + 2−λ(tc−to)βµ holds.

Theorem 4.1. Algorithm DenStream maintains at
most v

λ log (βµ
βµ−1)(log (T)− log (1

λ log (βµ
βµ−1))) o-micro-

clusters.

Proof. We divide the time elapsed into buckets of width
l = d 1

λ log(βµ
βµ−1)e. Let B be the current bucket id and

ci (1 ≤ i ≤ B) denote the number of o-micro-clusters in
current group of o-micro-clusters C, which are created
in bucket B − i + 1. The number of points merged by
such an o-micro-cluster is at least i from bucket B−i+1
to B; otherwise it would have been deleted. Let v be
the number of points arrived in unit time, i.e., stream
speed. The number of points arrived in each bucket is
vl. We get the following constraints:

(4.3)
j∑

i=1

ici ≤ jvl for j = 1, 2, ...B.

From Inequality 4.3, it could be proven by induction
that,

(4.4)
j∑

i=1

ci ≤
j∑

i=1

vl

i
for j = 1, 2, ...B.

Since |C| =
j∑

i=1

ci, from Inequality 4.4, we get

|C| ≤
B∑

i=1

vl
i ≤ vl log B = v

λ log (βµ
βµ−1)(log (T) −

log (1
λ log (βµ

βµ−1)))

Theorem 4.1 shows that the total number of
micro-clusters (including the p-micro-clusters and o-
micro-clusters) increases logarithmically with increasing
stream length. However, we claim that the total num-
ber of micro-clusters in our algorithm is a small integer
in real applications. For example, let unit time be 1
millisecond, βµ = 2, v = 1000 and λ = 0.25, the total
number of micro-clusters for 1 millon years would be
less than 512K.

Initialization We apply the DBSCAN algorithm to
the first InitN points {P} to initialize the online
process. We initialize a group of p-micro-clusters by
scanning {P}. For each point p in {P}, if the total
weight (i.e., the number of points) in its ε neighborhood
is above βµ, then we create a p-micro-cluster by p and
its neighbors, and delete them from {P}.

4.2 Generating Clusters The on-line maintained
micro-clusters capture the density area of data streams.
However, in order to get meaningful clusters, we need to
apply some clustering algorithm to get the final result.
When a clustering request arrives, a variant of DBSCAN
algorithm is applied on the set of on-line maintained p-
micro-clusters to get the final result of clustering. Each
p-micro-cluster cp is regarded as a virtual point located
at the center of cp with weight w.

The variant of DBSCAN algorithm includes two pa-
rameters ε and µ. We adopt the concept of density-
connectivity, similar to [8], to determine the final clus-
ters. That is, all the density-connected p-micro-clusters
form a cluster.

Definition 4.1. (directly density-reachable) A p-
micro-cluster cp is directly density-reachable from a
p-micro-cluster cq wrt. ε and µ, if the weight of cq is
above µ (i.e., cq corresponds a c-micro-cluster) and
dist(cp, cq) ≤ 2 · ε, where dist(cp, cq) is the distance
between the centers of cp and cq.

Intuitively, since the points are distributed within
the radiuses of the micro-clusters, we regard two p-
micro-clusters as density-reachable when they are tan-
gent (or intersecting), i.e., dist(cp, cq) ≤ 2 · ε. The two
micro-clusters may actually not intersect even if their
distance is smaller than 2 ·ε, because the actual radiuses
of the micro-clusters can be smaller than ε. In such a
case, they are not directly density-reachable. Fortu-
nately, we can detect this phenomena by further check-
ing whether dist(cp, cq) ≤ rp + rq or not, where rp and
rq are the radiuses of cp and cq, respectively. And the
final result will be similar to the one which is produced
by applying DBSCAN to the original data stream with
parameter ε and µ.

Definition 4.2. (density-reachable) A p-micro-cluster
cp is density-reachable from a p-micro-cluster cq wrt. ε
and µ, if there is a chain of p-micro-clusters cp1 , ..., cpn

,
cp1 = cq, cpn = cp such that cpi+1 is directly density-
reachable from cpi .

Definition 4.3. (density-connected) A p-micro-cluster
cp is density-connected to a p-micro-cluster cq wrt. ε
and µ if there is a p-micro-cluster cm such that both cp

and cq are density-reachable from cm wrt. ε and µ.

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
en

si
ty

Micro-cluster ID

 ad
 md

(a) stream length=30,000

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 D
en

si
ty

Micro-cluster ID

 ad
 md

(b) stream length=60,000

Figure 2: ad vs. md

5 Discussion

The density is maintained by the weight of the micro-
cluster with limited radius. There are two alternative
definitions of the radius. The one is rmax, which is
the maximal distance from any point in micro-cluster
cp to the center of cp. The density corresponding
to rmax is denoted as md. The other is ravg, which
is the average distance from the points in cp to the
center of cp. The density corresponding to ravg is
denoted as ad. In static environment, rmax is a more
intuitive measurement. However, it is hard to get
rmax precisely with limited memory in a streaming
environment, because the points in cp constantly fade
out. In the worst case, if the distance from each point
to the center is monotonically decreasing, it costs O(n)
space. In the random case, the expected space cost is
O(log n). However, it makes the assumption on the
arrival of data and introduces additional computation
and memory cost for each micro-cluster.

We claim that for density measurement in a data
stream, ad is simple but effective. To study the
effectiveness of ad, we download the SEQUOIA 2000
benchmark data [16]. There are four types of data in
the database: raster data, point data, polygon data
and directed graph data. The point data set contains
62,584 Californian names of landmarks. This data set is
converted into a data stream by taking the data input
order as the order of streaming. A set of experiments
is designed to compare ad to md. Figures 2(a) and (b)
depict the comparison result on the stream with length
30,000 and 60,000, respectively. We compute ad for 20
randomly selected micro-clusters. The corresponding

M
C
2
M
C
1

X

(a) The influence
areas

M
C
2
M
C
1

X

r

(b) No overlap-
ping

M
C
2
M
C
1

X

r

(c) Really overlap-
ping

Figure 3: The overlapping problem

md is gotten by checking the number of points in the ε
neighborhood of the center of the micro-cluster in the
stream. We normalize the density as follows:

Normalized Den =
den−minimum den

maximum den−minimum den

Figure 2 shows that the trend of ad curve is very
similar to that of md. Since we are looking for a density
measurement to determine whether two micro-clusters
are similar (or in the same cluster), we believe that ad
is a sufficiently good replacement for md.

P-micro-clusters may have overlapping. Figure 3(a)
illustrates the influence areas of two overlapping micro-
clusters. The light grey area is the influence area of
MC1, while the white area is the influence area of
MC2, because each new point is merged into its nearest
micro-cluster. The border is a hyperplane which is
perpendicular to the line between MC1 and MC2 and
divides the line into exactly two halves. Obviously, if
MC2 does not exist, the points in the right half of the
intersection area of MC1 and MC2 (called, X area)
should be absorbed by MC1. When MC2 is pruned,
the points in MC2 located in the X area should be
reassigned to MC1, because from now on the X area
belongs to the influence area of MC1.

The problem becomes how to estimate the number
of points in MC2 located in the X area. One strategy is
assuming that the points in MC2 follow normal distri-
bution and estimating a pseudo-point to represent the
points in MC2 located in the X area. However, the accu-
racy of this strategy is not very good. Therefore, when
MC2 is pruned, we calculate the radius of MC2, and
check whether the area in the radius of MC2 overlaps
with the X area. If there is no overlapping, as shown
in Figure 3(b), we needn’t do the reassignment. Oth-
erwise, as shown in Figure 3(c), we estimate a pseudo-
point which represents the points in MC2 located in
the X area, by assuming the points in MC2 follow a
gaussian distribution, and reassign this pseudo-point to
MC1. The mean of the distribution equals to the center
of MC2 and the variance of the distribution equals to
the radius of MC2.

6 Experimental Evaluation

In this section, we present an experimental evaluation
of DenStream. We implemented DenStream as well as
the comparative method CluStream in Microsoft Visual
C++. All experiments were conducted on a 3.4 GHz
PentiumIV PC with 1GB memory, running Microsoft
Windows Xp.

6.1 Data Sets and Evaluation To evaluate the
clustering quality, scalability, and sensitivity of the
DenStream algorithm both real and synthetic data sets
are used. The three synthetic data sets, DS1, DS2
and DS3, are depicted in Figures 4(a), (b) and (c),
respectively, which are the similar data sets used by [8].
Each of them contains 10,000 points. We generate an
evolving data stream (denoted as EDS) by randomly
choosing one of the data sets (DS1, DS2 and DS3)
10 times, for each time the chosen data set forms a
10,000 points segment of the data stream, and the total
length of the evolving data stream is 100,000. Because
we know the true (class) cluster labels of each points
in the data sets DS1, DS2 and DS3, we can get the
true cluster (class) label of each points in EDS. The
real data sets are the KDD CUP’99 Network Intrusion
Detection data set (all 34 continuous attributes out of
the total 42 available attributes are used) and KDD
CUP’98 Charitable Donation data set (as in [1], the
total 56 fields extracted from 481 fields of each record
are used). Both of them have been used in [1]. And
they are converted into data streams by taking the data
input order as the order of streaming. The clustering
quality is evaluated by the average purity of clusters
which is defined as follows:

pur =

∑K
i=1

|Cd
i |

|Ci|
K

× 100%,

where K denotes the number of clusters. |Cd
i | denotes

the number of points with the dominant class label in
cluster i. |Ci| denotes the number of points in cluster i.

Intuitively, the purity measures the purity of the
clusters with respect to the true cluster (class) labels
that are known for our data sets. Since the weight
of points fades out gradually, we compute the purity
by only the points arriving in a pre-defined horizon
H (or window) from current time. Our experimental
results show that the purity results are insensitive to
the horizon.

In order to test the scalability of DenStream, we
also generate some synthetic data sets with different
numbers of dimensions and numbers of natural clusters.
As in [1], the points of each synthetic data set follow
a series of Gaussian distributions, while the mean and
variance of current distribution are changed for every

(a) Data set DS1 (b) Data set DS2 (c) Data set DS3

Figure 4: Synthetic data sets

(a) Clustering on DS1 (b) Clustering on DS2 (c) Clustering on DS3

Figure 5: Clustering on DS1, DS2 and DS3

(a) Clustering on EDS(t=10) (b) Clustering on EDS(t=20) (c) Clustering on EDS(t=30)

Figure 6: Clustering on the evolving data stream EDS

(a) Clustering on DS1 with 5%

noise

(b) Clustering on the evolving

stream EDS with 5% noise(t=20)

Figure 7: Clustering on data streams with noise

10 20 30 40 50
60

70

80

90

100

C
lu

st
er

 P
ur

ity
 %

Time Unit

 DenStream CluStream

Figure 8: Clustering quality(EDS data stream, hori-
zon=2, stream speed=2000)

10 20 30 40 50
60

70

80

90

100

C
lu

st
er

 P
ur

ity
 %

Time Unit

 DenStream CluStream

Figure 9: Clustering quality(EDS data stream, hori-
zon=10, stream speed=1000)

10,000 points during the synthetic data generation.
We adopt the following notations to characterize the
synthetic data sets: ‘B’ indicates the number of data
points in the data set, whereas ‘C’ and ‘D’ indicate the
number of natural clusters, the dimensionality of each
point, respectively. For example, B400C5D20 means the
data set contains 400,000 data points of 20-dimensions,
belonging to 5 different clusters.

The input parameters of the DenStream algorithm
are discussed in the following:

1. For ε, if it is too large, it may mess up different
clusters. If it is too small, it requires a correspond-
ing smaller µ. However, a smaller µ will result
in a larger number of micro-clusters. Therefore,
we apply DBSCAN on the initial points. We set
ε = α · dmin, where α (0 < α < 1) is fixed by the
requirement of precision in real applications, and
dmin is the minimal distance between the nearest
pair of points in different clusters.

2. After the setting of ε, µ can be heuristically set by
the average number of points in the ε neighborhood
of each points in each clusters. When the density of
data streams is greatly varying, it’s relatively hard
to choose proper parameters. Generally, we should
choose a smallest acceptable µ.

3. λ is chosen by the requirement of real applica-
tions. β can be estimated by the character of data

Figure 10: Clustering quality(Network Intrusion data
set, horizon=1, stream speed=1000)

Figure 11: Clustering quality(Network Intrusion data
set, horizon=5, stream speed=1000)

streams. We will test the sensitivity of clustering
quality to parameters λ and β in Section 6.4.

Unless particularly mentioned, the parameters of
DenStream adopt the following setting: initial number
of points InitN = 1000, stream speed v = 1000, decay
factor λ = 0.25, ε = 16, µ = 10, outlier threshold
β = 0.2. The parameters for CluStream are chosen to
be the same as those adopted in [1].

6.2 Clustering Quality Evaluation At first, we
test the clustering quality of DenStream. Figures 5(a),
(b) and (c) show the results from three non-evolving
data streams DS1, DS2 and DS3, respectively, while
Figures 6(a), (b) and (c) show the results from the
evolving data stream EDS at different times. The first
portion of points in the EDS are DS1, then DS2, DS3· · · .
In the figures, the points denote the raw data, the circles
indicate the micro-clusters, and the number in the top-
left corner is the number of micro-clusters. It can been
seen that DenStream precisely captures the shape of
each cluster in all the data streams.

Figure 8 shows the purity results of DenStream
and CluStream in a small horizon on the EDS data
stream. The stream speed v is set at 2000 points
per time unit and horizon H = 2. It can be seen
that DenStream has a very good clustering quality. Its
clustering purity is always higher than 95% and much
better than CluStream whose purity is always about

10 20 30 40 50
30

40

50

60

70

80

90

100

C
lu

st
er

 P
ur

ity
 %

Time Unit

 DenStream CluStream

Figure 12: Clustering quality(EDS data stream with 1%
noise, horizon=2, stream speed=2000)

10 20 30 40 50
30

40

50

60

70

80

90

100

C
lu

st
er

 P
ur

ity
 %

Time Unit

 DenStream CluStream

Figure 13: Clustering quality(EDS data stream with 5%
noise, horizon=10, stream speed=1000)

70%. For example, at time 30, DenStream groups
different natural clusters into different clusters, while
CluStream groups two natural clusters into one cluster,
thus, the purity of DenStream is 25% higher than
CluStream. We also set the stream speed v at 1000
points per time unit and horizon H = 10 for EDS.
Figure 9 shows similar results as Figure 8. We conclude
that DenStream can also get much higher clustering
quality than CluStream in a relatively large horizon.

We also compare DenStream with CluStream on
the Network Intrusion data set. Figure 10 shows the
results in a small horizon H = 1. We test the data
set at selected time points when some attacks happen.
For example, at time 370 there are 43 “portsweep”
attacks, 20 “pod” attacks, and 927 “nepture” attacks
in H = 1. It can be seen that DenStream clearly
outperforms CluStream and the purity of DenStream is
always above 90%. For example, at time 86 the purity
of DenStream is about 94% and 20% higher than that
of CluStream. This is because DenStream can separate
different attacks into different clusters, while CluStream
may merge different attacks into one attack (or normal
connections). Figure 11 shows that DenStream also
outperforms CluStream in a relatively large horizon
H = 5 at most of the times expect time 310. We checked
the data set and found that at that time all the points
in horizon H = 5 belong to one “smurf” attack, that
is, any algorithm can achieve 100% purity at that time
including CluStream.

50000 100000 150000 200000 250000
1

2

3

4

5

6

7

8

E
xe

cu
tio

n
T

im
e(

in
 s

ec
on

ds
)

Length of Stream

 DenStream
 CluStream

Figure 14: Execution time vs. length of stream(Network
Intrusion data set)

20000 40000 60000 80000
0

2

4

6

8

10

12

14

16

18

20

E
xe

cu
tio

n
T

im
e(

in
 s

ec
on

ds
)

Length of Stream

 DenStream
 CluStream

Figure 15: Execution time vs. length of
stream(Charitable Donation data set)

6.2.1 When Noise Exists There is often some noise
in stream applications , which can not fit in any clusters.
Therefore, we also evaluate the DenStream algorithm in
noisy environments. In order to simulate the noise en-
vironment, we add some uniformly distributed random
noise in DS1, DS2, DS3 and EDS. Figures 7(a) and (b)
show the results from DS1 with 5% random noise and
EDS with 5% random noise, respectively. Both of them
demonstrate that DenStream can effectively capture the
shape of clusters while remove the noise in the data
streams.

We also calculate the purity result of DenStream
compared to CluStream over EDS with noise. Figures
12 and 13 show the clustering purity results of EDS
data streams with 1% and 5% noise, respectively. Both
of them demonstrate that our DenStream algorithm
can also achieve very high clustering quality when
noise exists. On the contrary, the clustering quality of
CluStream is not very good in the noisy environment.
For example, for EDS data stream with 5% noise,
the purity of DenStream is about 96% at time 20,
while the purity of CluStream is just about 42%, much
lower than that of DenStream. The high quality of
DenStream benefits from its effective pruning strategy,
which promptly gets rid of the outliers while keeps the
potential clusters. On the contrary, CluStream lacks an
effective mechanism to distinguish these two types of
new micro-clusters. Therefore, it wastes a lot of memory
to keep the outliers and merges or deletes a lot of micro-

Figure 16: Execution time vs. number of clusters

Figure 17: Execution time vs. dimensionality

clusters which correspond to natural clusters.

6.3 Scalability Results

Execution Time The efficiency of algorithms is mea-
sured by the execution time. The CluStream algo-
rithm needs to periodically store the current snapshot
of micro-clusters. And the snapshots are maintained in
disk in [1]. In order to improve the efficiency of CluS-
tream, we store the snapshots in memory in our imple-
mentation.

We use both Network Intrusion Detection and
Charitable Donation data sets to test the efficiency of
DenStream against CluStream. Figure 14 shows the ex-
ecution time for the Network Intrusion data set. We
can see that both the execution time of DenStream and
CluStream grow linearly as the stream proceeds, and
DenStream is more efficient than CluStream. In addi-
tion, DenStream takes less than 3 seconds to process
100,000 points. Thus, DenStream can comfortably han-
dle high speed data streams. Figure 15 shows that Den-
Stream is also more efficient than CluStream for the
Charitable Donation data set.

The execution time of DenStream is then evaluated
on data streams with various dimensionality and differ-
ent numbers of natural clusters. Synthetic data sets are
used for these evaluations, because any combination of
dimensionality and number of natural clusters could be
gotten in the generation of data sets.

The first series of data sets were generated by vary-

Figure 18: Memory usage

Figure 19: Clustering quality vs. decay factor λ

ing the number of natural clusters from 5 to 30, while
fixing the number of points and dimensionality. Figure
16 demonstrates that DenStream is of linear execution
time in proportion to the number of natural clusters.
It can also be seen that the execution time grows very
slowly, because the number of c-micro-clusters stays al-
most unchanged as the number of natural clusters in-
creases. For example, for data set series B200D40, when
the number of clusters changes from 5 to 30, the execu-
tion time only increases by 2.5 seconds.

The other three series of data sets were generated
by varying the dimensionality from 10 to 40, while
fixing the number of points and natural clusters. Figure
17 shows that as the dimensionality increases, the
execution time increases linearly.

Memory Usage We use both Network Intrusion De-
tection and EDS data stream to evaluate the memory
usage of DenStream. The memory usage is measured by
the number of micro-clusters. Figure 18 shows that the
memory usage of DenStream is limited and bounded as
the streams proceed. For example, for EDS data stream,
when the stream length changes from 80,000 to 100,000,
the memory usage only increases by 5.

6.4 Sensitivity Analysis An important parameter
of DenStream is the decay factor λ. It controls the
importance of historical data to current clusters. In
our pervious experiments, we set it to 0.25, which is a
moderate setting. We also test the clustering quality

Figure 20: Clustering quality vs. outlier threshold β

by varying λ from 0.00625 to 4. Figure 19 shows the
results. When λ is set to a relatively small or high value,
the clustering quality becomes poor. For example, when
λ = 0.00625, the purity is about 82%. When λ = 4, the
points decays soon after their arrival, and only a small
amount of recent points contributes to the final result.
So the result is also not very good. However, the quality
of DenStream is still higher than that of CluStream.
It can been seen that if λ ranges from 0.125 to 1, the
clustering quality is quite good and stable, and always
above 95%.

Another important parameter is the outlier thresh-
old β. Figure 20 shows the clustering quality of Den-
Stream when β is varying from 0.2 to 1. If β ranges
between 0.2 and 0.6, the clustering quality is very good.
However, if it is set to a relatively high value like 1, the
quality deteriorates greatly. Because a lot of points cor-
responding to potential clusters are pruned, the quality
is reduced. Note again, that DenStream outperforms
CluStream for all parameter settings.

7 Conclusion

In this paper, we have proposed DenStream, an ef-
fective and efficient method for clustering an evolving
data stream. The method can discover clusters of ar-
bitrary shape in data streams, and it is insensitive to
noise. The structures of p-micro-clusters and o-micro-
clusters maintain sufficient information for clustering,
and a novel pruning strategy is designed to limit the
memory consumption with precision guarantee. Our
experimental performance evaluation over a number of
real and synthetic data sets demonstrates the effective-
ness and efficiency of DenStream in discovering clusters
of arbitrary shape in data streams.

The future work includes the following topics: the
discovery of clusters with arbitrary shape at multiple
levels of granularity, dynamic adaption of the param-
eters in data streams, and investigation of our frame-
work for outlier detection and density-based clustering
in other stream models, in particular, in a sliding win-
dow model.

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for clustering evolving data streams. In
Proc. of VLDB, 2003.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for projected clustering of high dimensional
data streams. In Proc. of VLDB, 2004.

[3] M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander.
Optics: Ordering points to identify the clustering
structure. In Proc. of SIGMOD, pages 49–60, 1999.

[4] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better
streaming algorithms for clustering problems. In Proc.
of STOC, pages 30–39, 2003.

[5] B. Dai, J. Huang, M. Yeh, and M. Chen. Clustering on
demand for multiple data streams. In Proc. of ICDM,
pages 367–370, 2004.

[6] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proc. of KDD, 2000.

[7] P. Domingos and G. Hulton. A general method for
scaling up machine learning algorithms and its appli-
cation to clustering. In Proc. of the 18th International
Conference on Machine Learning (ICML 2001), pages
106–113, 2001.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proc. of KDD, 1996.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. In-
cremental clustering for mining in a data warehousing
environment. In Proc. of VLDB, pages 323–333, 1998.

[10] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams:theory and
practice. In IEEE Transactions on Knowledge and
Data Engineering, pages 515–528, 2003.

[11] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data stream. In Proc. of FOCS, 2000.

[12] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient
clustering algorithm for large databases. In Proc. of
SIGMOD, 1998.

[13] A. Hinneburg and D. A. Keim. An efficient approach
to clustering in large multimedia databases with noise.
In Proc. of KDD, pages 58–65, 1998.

[14] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. of VLDB, pages
346–357, 2002.

[15] O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzlez.
Tecno-streams: tracking evolving clusters in noisy data
streams with a scalable immune system learning model.
In Proc. of ICDM, pages 235–242, 2003.

[16] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith.
The sequoia 2000 storage benchmark. In Proc. of
SIGMOD, pages 2–11, 1993.

[17] W. Wang, J. Yang, and R. R. Muntz. Sting: A
statistical information grid approach to spatial data
mining. In Proc. of VLDB, pages 186–195, 1997.

[18] J. Yang. Dynamic clustering of evolving streams with
a single pass. In Proc. of ICDE, 2003.

