CanTree: A Tree Structure for
Efficient Incremental Mining of Frequent Patterns

Carson Kai-Sang Leung*

Quamrul I. Khan

Tariqul Hoque

The University of Manitoba, Winnipeg, MB, Canada
{kleung, gikhan, thoque} @ cs.umanitoba.ca

Abstract

Since its introduction, frequent-pattern mining has been
the subject of numerous studies, including incremental up-
dating. Many existing incremental mining algorithms are
Apriori-based, which are not easily adoptable to FP-tree
based frequent-pattern mining. In this paper, we propose
a novel tree structure, called CanTree (Canonical-order
Tree), that captures the content of the transaction database
and orders tree nodes according to some canonical order.
By exploiting its nice properties, the CanTree can be eas-
ily maintained when database transactions are inserted,
deleted, and/or modified. For example, the CanTree does
not require adjustment, merging, and/or splitting of tree
nodes during maintenance. No rescan of the entire updated
database or reconstruction of a new tree is needed for in-
cremental updating. Experimental results show the effec-
tiveness of our CanTree.

1. Introduction

Since its introduction [1], the problem of mining associ-
ation rules—and the more general problem of finding fre-
quent patterns—from large databases has been the subject
of numerous studies. These studies can be broadly divided
into the following two categories.

(a) Functionality: The central question considered is
what (kind of rules or patterns) to compute. While some
studies [4, 6, 11] in this category considered the data min-
ing exercise in isolation, some others explored how data
mining can best interact with (i) the database management
system [27, 28] or (ii) the human user. Examples of the lat-
ter include constrained mining [5, 7, 12, 18, 20, 22, 25] and
interactive and online mining [10, 15, 18].

(b) Performance: The central question considered is how
to compute the association rules or frequent patterns as ef-
ficiently as possible. Studies in this category can be fur-
ther classified into several subgroups. The first subgroup
consists of fast algorithms based on the levelwise Apriori
framework [2]. The second subgroup focuses on perfor-
mance enhancement techniques like hashing and segmenta-
tion [21, 24] for speeding up Apriori-based algorithms. The
third subgroup is on incremental updating.

*Person handling correspondence: C.K.-S. Leung.

With advances in technology, one could easily collect
a large amount of data. This, in turn, poses a mainte-
nance problem. Specifically, when new transactions are
inserted into an existing database DB and/or when some
old transactions are deleted from DB, one may need to
update the collection of frequent patterns (e.g., add to the
collection those patterns that were previously infrequent
in the old database DB but are frequent in the updated
database D B’). Algorithms such as FUP [8], FUP, [9], and
UWERP [3] were developed to solve this problem.

In general, the above mentioned algorithms are Apriori-
based, that is, they depend on a generate-and-test paradigm.
They compute frequent patterns by generating candidates
and checking their frequencies (i.e., support counts) against
the transaction database. To improve efficiency of the min-
ing process, Han et al. [13, 14] proposed an alternative
framework, namely a tree-based framework. The algorithm
they proposed in this framework constructs an extended
prefix-tree structure, called Frequent Pattern tree (FP-tree),
to capture the content of the transaction database. Rather
than employing the generate-and-test strategy of Apriori-
based algorithms, such a tree-based algorithm focuses on
frequent pattern growth—which is a restricted test-only ap-
proach (i.e., does not generate candidates, and only tests for
frequency).

Since the introduction of such an FP-tree based frame-
work, some studies have been proposed to improve func-
tionality (e.g., interactive FP-tree based mining [19])
and performance (e.g., FP-tree based segmentation tech-
niques [23]). So, how about FP-tree based incremen-
tal mining? Recall that algorithms such as FUP [8],
FUP; [9], and UWEP [3] were developed to handle incre-
mental mining in the Apriori-based framework. They can-
not be easily adoptable to FP-tree based incremental min-
ing. Fortunately, some tree-based incremental mining algo-
rithms were recently developed. For example, Cheung and
Zaiane [10] proposed the FELINE algorithm with the CATS
tree, whereas Koh and Shieh [17] proposed the AFPIM al-
gorithm. The former aims to make the CATS tree (a vari-
ant of the FP-tree) compact, and the FELINE algorithm is
well-suited for inferactive mining where the database re-
mains unchanged and only the minimum support thresh-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

FELINE / CATS tree

AFPIM / FP-tree

|| Our proposed CanTree

One scan on db (i.e., inserted, deleted, and/or
updated transactions) is required to maintain
the CATS tree

In the worst case, the AFPIM algorithm re-
quires two scans on DB’ = DB U db to up-
date/rebuild the FP-tree

Only one scan on db is required to maintain the
CanTree

Items are arranged in descending order of local
frequency in each path of the CATS tree

In the FP-tree, items are arranged in descending
order of (global) frequency of DB’

In the CanTree, items are arranged according to
some canonical order, which is unaffected by
frequency changes

Updates to DB may cause swapping and/or
merging of tree nodes

Updates may cause swapping (via the bubble
sort), splitting, and/or merging of tree nodes

Updates to DB does not lead to any swapping
of tree nodes

Figure 1. Our proposed CanTree vs. the most relevant work.

old gets changed. So, it works well in situations that fol-
low the “build once, mine many” principle (e.g., interactive
mining), but its efficiency for incremental mining (where
the database is changed frequently) is unclear. Unlike the
FELINE algorithm, the AFPIM algorithm was proposed for
incremental mining. Specifically, it was designed to pro-
duce the FP-tree of the updated database, in some cases,
by adjusting the old tree via the bubble sort. However, in
many other cases, it requires rescanning the entire updated
database DB’ in order to build the corresponding FP-tree.

To summarize, those existing Apriori-based incremen-
tal mining algorithms cannot be easily adoptable to FP-
tree based incremental mining. Among those FP-tree based
algorithms, the FELINE algorithm with the CATS tree
was mainly designed for interactive mining, where the
“build once, mine many” principle holds. However, such
a principle does not necessarily hold for incremental min-
ing. The AFPIM algorithm was proposed to reduce—but
not to eliminate—the possibility of rescanning the updated
database. Is there any algorithm that aims for incremental
mining? Is there any tree structure that is simpler but yet
more powerful than the CATS tree? Can we do better than
the AFPIM algorithm (i.e., can we avoid rescanning the en-
tire updated database)?

The key contribution of this work is the development
of a simple, but yet powerful, novel tree structure for main-
taining frequent patterns found in the updated database.
More specifically, we propose a novel tree structure, called
CanTree (CANonical-order TREE), that aims for incremen-
tal mining. The tree captures the content of the transaction
database. When the database is updated (i.e., transactions
are inserted, deleted, and/or modified), our algorithm does
not need to rescan the entire updated database. Experimen-
tal results in Section 5 show that frequent-pattern mining
with our CanTree is more efficient than that with existing
algorithms or structures. Figure 1 summarizes the salient
differences between our proposed CanTree and its most rel-
evant work.

This paper is organized as follows. In the next sec-
tion, related work is described. Section 3 introduces our
CanTree for incremental mining. In Section 4, we discuss
the additional benefits of CanTrees (e.g., for incremental
constrained mining). Section 5 shows experimental results.
Finally, conclusions are presented in Section 6.

2. Related Work

In this section, we discuss two existing FP-tree based
algorithms that handle incremental mining, namely (i) the
FELINE algorithm with the CATS tree [10] and (ii) the
AFPIM algorithm [17].

2.1. The FELINE Algorithm with the CATS Tree

Cheung and Zaiane [10] designed the CATS tree (Com-
pressed and Arranged Transaction Sequences tree) mainly
for interactive mining. The CATS tree extends the idea
of the FP-tree to improve storage compression, and allows
frequent-pattern mining without the generation of candidate
itemsets. The aim is to build a CATS tree as compact as
possible.

The idea of tree construction is as follows. It requires one
database scan to build the tree. New transactions are added
at the root level. At each level, items of the new transaction
are compared with children (or descendant) nodes. If the
same items exist in both the new transaction and the chil-
dren (or descendant) nodes, the transaction is merged with
the node at the highest frequency level. The remainder of
the transaction is then added to the merged nodes, and this
process is repeated recursively until all common items are
found. Any remaining items of the transaction are added as
a new branch to the last merged node. If the frequency of a
node becomes higher than its ancestors, then it has to swap
with the ancestors so as to ensure that its frequency is lower
than or equal to the frequencies of its ancestors. Let us con-
sider the following example to gain a better understanding
of how the CATS tree is constructed.

Example 1 Consider the following database:

| | | TID | Contents |
t1 {a,d,b,g,e,c}
DB | Original DB to {d, f,b,a,e}
t3 a
ta {d, a,b}
db1 st group of ts {a,c, b}
insertions te {c,b,a,e}
dba | 2nd group of | tr {a, b, c}
insertions ts {a, b, c}

Figure 2 shows the resulting CATS tree after each transaction is
added. Some important steps are highlighted as follows. Initially,
the CATS tree is empty. Transaction t1 = {a,d,b, g, e, c} is then
added as it is. When transaction t2 = {d, f,b,a, e} is added,

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

a:l a2 a3 a4 a5
I | | |

d:1 d:2 d:2 d:3 b:4
I | | /N

b:l b:2 b:2 b:3 d:3 c:
I | | |

gl e:2 e:2 e:2 e:2
N N N

e:l g1 f:1 g1 f:1 g1 f:1 g1 f:1
| | | |

c:l c:l c:l c:l c:l

a:6 a7 a8
| | |
b:5 b:6 b:7
NN
1 d:3 c2 d:3 c3 d:3 c4
T R .
e:2 e:l e:2 e:l e:2 e:l
gl f:1 g1 f:1 g1 f:1
| | |
c:l c:l c:l

Figure 2. The CATS tree after each transaction is added (for the FELINE algorithm).

common items (i.e., a,d,b,e) are merged with the existing tree.
To do so, node e is swapped with its ancestor g (i.e., e is “moved
up”). Since there is no other common items, the remaining item
of t2 (namely, f) is added as a new branch to e. Transactions ts3
and t4 are added in a similar fashion. When transaction ts is
added, it finds and merges with common items a and b. Node b is
swapped with d, and “moved up”. For another common item c, it
cannot be swapped and merged. Otherwise, the tree property—the
frequency of a node is at least as high as the sum of frequencies
of its children—would be violated. Consequently, c is added as a
new branch (the right branch) to b. Transactions te, t7, and ts are
added in a similar fashion.

1t is interesting to note the following. First, CATS trees keep all
items in every transaction. This is different from FP-trees, which
keep only those frequent items. Second, nodes in CATS trees are
ordered according to local frequency in the paths. For example,
after te is added, e is above c on the left branch while the opposite
holds on the right branch. |

Given that the above tree construction step takes only
a single data scan (i.e., constructing the tree without prior
knowledge of data), Cheung and Zaiane admitted that their
CATS tree is not guaranteed to have the maximal compres-
sion. Moreover, the tree compression is sensitive to (a) the
ordering of transactions within the database and (b) the or-
dering of items within each transaction.

In addition, when handling incremental updates, their
FELINE algorithm (FrEquent/Large patterns mINing with
CATS trEe) suffers from the problems/weaknesses de-
scribed below. First, tree construction could be computa-
tionally expensive, because it searches for common items
and tries to merge the new transaction (the entire one or a
portion of it) into an existing tree path when each transac-
tion is added. It checks existing tree paths one-by-one until
a mergeable one is found. Since items are arranged accord-
ing to their local frequency in the path in the CATS tree, an
item (e.g., e in Example 1) may appear above another item
(e.g., ¢) on one branch, but below it on another branch. This
makes such a search-and-merge costly.

Second, a lot of computation is spent on tree construc-
tion with an expectation that the tree is “built once, mined
many” (e.g., in interactive mining where database remains
unchanged and only the minimum support threshold min-

sup is changed interactively). However, such a “build once,
mine many” principle does not necessarily hold for incre-
mental mining. Specifically, for incremental mining, the
database can be changed by insertions, deletions, and/or
modifications of transactions. Hence, after a tree is built,
it may be mined only once.

Third, extra cost is required for the swapping and/or
merging of nodes. See Example 1.

Fourth, since items are arranged in descending local fre-
quency order in the CATS tree. So, when forming projected
databases (during the mining process), the FELINE algo-
rithm needs to traverse both upwards and downwards to in-
clude frequent items. This is different from usual FP-tree
mining (e.g., using the FP-growth algorithm [13]) where
only upward traversal is needed. Specifically, the CATS tree
uses the local-frequency ordering (e.g., item e is above ¢ on
the left branch but is below ¢ on the right branch in the fi-
nal tree in Example 1), the downward traversal is needed
for completeness (e.g., to avoid missing item c at the leave
of the left branch). Consequently, it costs more to traverse
both upwards and downwards! Due to the additional down-
ward traversal, extra work is need for additional checking
to ensure that infrequent items as well as those mined items
are not doubly-counted when forming projected databases!

2.2. The AFPIM Algorithm

Koh and Shieh [17] developed the AFPIM algorithm
(Adjusting FP-tree for Incremental Mining). The key idea
of their algorithm can be described as follows. It uses the
original notion of FP-trees, in which only “frequent” items
are kept in the tree. Here, an item is “frequent” if its fre-
quency is no less than a threshold called preMinsup, which
is lower than the usual user-support threshold minsup. As
usual, all the “frequent” items are arranged in descend-
ing order of their global frequency. So, insertions, dele-
tions, and/or modifications of transactions may affect the
frequency of items. This, in turn, affects the ordering of
items in the tree. More specifically, when the ordering is
changed, items in the tree need to be adjusted. The AFPIM
algorithm does so by swapping items via the bubble sort,
which recursively exchanges adjacent items. This can be
computationally intensive because the bubble sort needs to

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER
SOCIETY

a4 a6 a6 a8

d:3 d:3 cl d:3 el c5 c5

| - /N

e:2 e:3 e2 c:l d:3 d:
e:

c3 cl e:3

d:2

a8
b:3 b:5 b:5 b:7 b:7
1 e:l e:l

1

Figure 3. The FP-trees for DB, DB U db,, and
DB U db; U dbs (for the AFPIM algorithm).

apply to all the branches affected by the change in item fre-
quency.

In addition to changes in the item ordering, incremen-
tal updating may also lead to the introduction of new items
in the tree. This occurs when a previously infrequent item
becomes “frequent” in the updated database. When facing
this situation, the AFPIM algorithm can no longer produce
an updated FP-tree by just adjusting items in the old tree.
Instead, it needs to rescan the entire updated database to
build a new FP-tree. This can be costly, especially for large
databases. To gain a better understanding of the AFPIM
algorithm, let us consider the following example.

Example 2 Consider the same database as in Example 1. Here,
we set the threshold preMinsup be 35% (and the minimum support
threshold minsup be 55%). Figure 3 shows the original FP-tree
and trees after the first and second groups of insertions. Some
important steps are highlighted as follows. The AFPIM algorithm
first scans the original database D B once to obtain the global fre-
quency of each item (i.e., {(a:4, b:3, d:3, e:2)). It then scans DB
the second time for building the FP-tree, in which only “frequent”
items are kept. Here, items having frequency at least minsup must
be “frequent” (because minsup > preMinsup), but the con-
verse does not hold.

Note that the FP-tree for DB contains only items a, b, d, and
e. After transactions ts and te are inserted, item c (which had a
frequency of 1—i.e., infrequent—in D B) becomes “frequent” with
a frequency of 3 in DB U dby. Since not all “frequent” items in
D BUdb, are covered by the FP-tree of DB, the AFPIM algorithm
needs to rescan the entire updated database (i.e., D BUdb,) twice
for building a new tree. This could involve a lot of I/Os, especially
when the database is large.

After the second group of insertions (where transactions t7 and
ts are added), the frequency of items changes from {a:6, b:5, d:3,
e:3, ¢:3) in DBUdb to {a:8, b:7, ¢:5, d:3, e:3) in DBUdb, Udba.
Consequently, items d,e, and c in the middle tree in Figure 3
need to be swapped using the bubble sort. Besides the swap-
ping of nodes, the AFPIM algorithm may also require the merging
and/or splitting of nodes (e.g., after the second group of insertions,
c nodes are merged, but d and e nodes are split). |

Like the FELINE algorithm, the AFPIM algorithm also
suffers from several problems/weaknesses when handling
incremental updates. A problem is the amount of computa-
tion spent on swapping, merging, and splitting tree nodes.

Swapping is required because items arranged according to a
frequency-dependent ordering (specifically, descending or-
der of global frequency). So, when the database is updated
(e.g., by inserting and/or deleting transactions), frequencies
of items may be changed. As a result, the ordering of items
needs to be adjusted. This problem is more serious (than
FELINE) because it uses the bubble sort to recursively ex-
change adjacent tree nodes. The bubble sort is known to
be of O(h?) computation, where h is the number of tree
nodes involved in a tree branch. There are many branches
in a tree! Furthermore, the swapping of tree nodes often
leads to the merging and splitting of nodes. For instance,
the insertion of transactions ¢7 and tg in Example 2 changes
the frequency order of items in the tree. Nodes ¢ need to
swap with nodes d and e. After swapping, nodes d and e
in path (d, e, c) are split into two (i.e., (¢, d, e) and (d, e) as
branches of b). At the same time, three children of b (i.e., ¢
in paths (c), {c,d, e}, and {c, e)) are in common, and hence
the c nodes are merged and resulted in the rightmost FP-tree
in Figure 3. To summarize, incremental updates to database
often result in a lot of swapping, merging, and splitting of
tree nodes.

Another problem of the AFPIM algorithm is its require-
ment for an additional mining parameter preMinsup, which
is set to a value lower than the usual mining parameter
minsup (the minimum support threshold). With this ad-
ditional parameter, only the items whose frequency meets
preMinsup are kept in the tree. However, it is well-known
that finding an appropriate value for minsup is challenging,
which explains the call for interactive mining where the user
can interactively adjust or refine minsup. So, finding appro-
priate values for both minsup and preMinsup can be even
more challenging!

3. Our Canonical-Order Tree (CanTree)

Recall from the previous section that, when han-
dling incremental updates, the aforementioned tree-based
algorithms—both the FELINE algorithm (with the CATS
tree) and the AFPIM algorithm (with the FP-tree)—suffer
from several problems/weaknesses. These can be summa-
rized as follows:

(i) The FELINE algorithm requires a large amount of
computation for searching common items and merge-
able paths during the construction of CATS trees. In
addition, it needs extra downward traversals during the
mining process.

(ii) The AFPIM algorithm requires an additional mining
parameter (namely, preMinsup). Finding an appropri-
ate value for this parameter is not easy; it is as chal-
lenging as finding that for minsup.

(iii) Both FELINE and AFPIM algorithms need lots of
swapping, merging, and splitting of tree nodes, be-
cause items in the trees are arranged according to a

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

frequency-dependent ordering. So, when the database

is updated, item frequencies may have changed. This

results in changes in the ordering.
In the remaining of this section, let us describe our pro-
posed CanTree (CANonical-order TREE) and show how
it solves the above mentioned problems. In general, the
CanTree is designed for incremental mining. The construc-
tion of the CanTree only requires one database scan. This
is different from the construction of an FP-tree where two
database scans are required (one scan for obtaining item fre-
quencies, and another one for arranging items in descend-
ing frequency order). In our CanTree, items are arranged
according to some canonical order, which can be deter-
mined by the user prior to the mining process or at run-
time during the mining process. Specifically, items can
be consistently arranged in lexicographic order or alpha-
betical order (as in Example 3). Alternatively, items can
be arranged according to some specific order depending on
the item properties (e.g., their price values, their validity of
some constraints). For example, items can be arranged ac-
cording to prefix function order R or membership order M
for constrained mining. (See Section 4 for more details
on incremental constrained mining.) While the above or-
derings are frequency-independent, items can also arranged
according to some fixed frequency-related ordering (e.g., in
descending order of the global frequency of the “original”
database DB). Notice that, in this case, once the ordering
is determined (say, for D B), items will follow this ordering
in our CanTrees for subsequently updated databases (e.g.
DBUdby, DBUdby Udbs, ...) even the frequency ordering
of items in these updated databases is different from DB.
With this setting (the canonical ordering of items), there are
some nice properties, as described below.

Property 1 The ordering of items is unaffected by the
changes in frequency caused by incremental updates. [|

Property 2 The frequency of a node in the CanTree is at
least as high as the sum of frequencies of its children.]

By exploiting properties of our CanTree, we note the fol-
lowing. Transactions can be easily added to the CanTree
without any extensive searches for mergeable paths (like
those in FELINE). As canonical order is fixed, any changes
in frequency caused by incremental updates (e.g., inser-
tions, deletions, and/or modifications of transactions) do not
affect the ordering of items in the CanTree at all. Con-
sequently, swapping of tree nodes—which often leads to
merging and splitting of tree nodes—is not needed.

Once the CanTree is constructed, we can mine frequent
patterns from the tree in a fashion similar to FP-growth.
In other words, we employ a divide-and-conquer approach.
We form projected databases by traversing the paths up-
wards only. Since items are consistently arranged according

to some canonical order (e.g., lexicographic order, prefix
function order R, global frequency order of D B), one can
guarantee the inclusion of all frequent items using just up-
ward traversals. There is no worry about possible omission
or doubly-counting of items. Hence, for CanTrees, there
is no need for having both upward and downward traver-
sals. This significantly reduces computation by half! For
example, forming {X }-projected databases (where X is

a,b,c, ..., g) requires traversals of 62 nodes in the rightmost

CATS tree in Figure 2; it needs to traverse only 27 nodes in

our CanTree!

To summarize, our proposed CanTree solves the prob-
lems/weaknesses of the FELINE or AFPIM algorithms as
follows:

(i) For our CanTree, items are arranged according to
some canonical order that is unaffected by the item
frequency. Hence, searching for common items and
mergeable paths during the tree construction is easy.
No extra downward traversals are needed during the
mining process.

(i) The construction of our proposed CanTree is indepen-
dent of the threshold values. Thus, it does not require
such user thresholds as preMinsup.

(iii) Since items are consistently ordered in our CanTree,
any insertions, deletions, and/or modifications of trans-
actions have no effect on the ordering of items in the
tree. As a result, swapping of tree nodes—which may
lead to merging and splitting of tree nodes—is not
needed.

The above shows how we solve the problems/weaknesses

of the CATS tree/FELINE algorithm and the AFPIM algo-

rithm by using our CanTree. To gain a better understanding,
let us consider the following example.

Example 3 Consider the same database as in Example 1. Fig-
ure 4 shows the original tree and the trees after the first and sec-
ond groups of insertions. The construction of the original CanTree
only requires one database scan. This is different from the con-
struction of an FP-tree where two database scans are required.
Like the CATS tree, our CanTree also keeps all items in every
transaction. In the tree, items are arranged according to some
canonical order (say, lexicographical/alphabetical order in this
example). Hence, transactions t1 to ta can be easily added to
the tree, without any extensive searches for mergeable paths (like
those in FELINE). As canonical order is unaffected by the fre-
quency order of items at runtime, any changes in frequency caused
by incremental updates do not affect the ordering of items in the
CanTree at all. Consequently, swapping of tree nodes—which of-
ten leads to merging and splitting of tree nodes—is not needed.
Once the CanTree is constructed, we can mine frequent pat-
terns from the tree in a divide-and-conquer fashion (similar to FP-
growth). We form projected databases (solely for frequent items)
by traversing the paths upwards only (i.e., no need for having both
upward and downward traversals). During the traversals, we only
include frequent items. Determination of whether an item is fre-
quent can be easily done by a simple look-up (an O(1) operation)

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

a6

b:5

SN

a8

b:7

SN

c:l d:2 c:3 d:2 c:5 d:2

:1 e:l e:l :1 e:l e:l

o
o

o
o

Figure 4. The CanTree after each group of
transactions is added.

at the header table. There is no worry about possible omission or
doubly-counting of items. |

4. Discussion

In this section, we discuss two issues: (i) the applica-
bility of the proposed CanTree for incremental constrained
mining and (ii) efficiency and memory issues regarding our
CanTrees.

4.1. Applicability for Constrained Mining

So far, we have shown how efficient our proposed
CanTrees are for incremental mining. However, it is impor-
tant to note that CanTrees also provide us with additional
functionalities. For example, CanTrees can be used for in-
cremental constrained mining.

Besides incremental mining, frequent-pattern mining
has been generalized to many forms since its introduc-
tion. These include constrained mining. The use of con-
straints permits user focus and guidance, enables user ex-
ploration and control, and leads to effective pruning of
the search space and efficient discovery of frequent pat-
terns satisfying the user-specified constraints. Over the past
few years, several FP-tree based constrained mining algo-
rithms have been developed to handle various classes of
constraints. For example, the FZC algorithms [25] han-
dle the so-called convertible constraints (e.g., Ceony =
avg(S.Price) < 7 which finds frequent itemsets whose av-
erage item price is at most $7). As another example, the
FPS algorithm [20] supports the succinct constraints (e.g.,
Csuce = max(S.Price) > 30 which finds frequent item-
sets whose maximum item price is at least $30). The suc-
cess of these algorithms partly depends on their ability to
arrange the items according to some specific order in the
FP-trees. More specifically, 7ZC arranges items accord-
ing to prefix function order R (e.g., arranges the items in
ascending order of the price values for the above Copny)-
Similarly, FPS arranges items according to order M spec-
ifying their membership (e.g., arranges the items in such
a way that mandatory items below optional items for the
aforementioned Cj,..). For lack of space, we do not de-
scribe these algorithms further; please refer to the work of
Pei et al. [25] and Leung et al. [20] for more details.

Our proposed CanTree provides the user with additional
functionality to these algorithms, namely incremental con-
strained mining. More precisely, these algorithms can use
CanTrees (instead of FP-trees), and arrange tree items ac-
cording to some canonical order (e.g., order R for the FZC
algorithm, order M for the FPS algorithm). By so doing,
when transactions are inserted into or deleted from the orig-
inal database, the algorithms no longer need to rescan the
updated database nor do they need to rebuild a new tree
from scratch. In addition, no merging or splitting of tree
nodes is needed.

4.2, Efficiency and Memory Issues

On the surface, it appears that our CanTree may take a
large amount of memory. For instance, our CanTree may
not be as compact as the corresponding CATS tree. How-
ever, it is important to note that CATS trees do not neces-
sarily reduce computation or time (e.g., a lot of computation
spent on finding mergeable paths as well as traversing paths
upwards and downwards). In contrast, our CanTrees sig-
nificantly reduce computation and time, because they easily
find mergeable paths and require only upward path traver-
sals. As a result, our proposed CanTrees provide users
with efficient incremental (constrained or unconstrained)
mining. Moreover, with modern technology, main memory
space is no longer a big concern. This explains why, in this
paper, we made the same realistic assumption as in many
studies [10, 16, 26, 29] that we have enough main memory
space (in the sense that the trees can fit into the memory).

Regarding the tree size, our CanTree—like FP-trees and
CATS trees—is an extended prefix-tree structure that cap-
tures the content of the transaction database. With the path
sharing, the number of tree nodes is no more than the num-
ber of items in the database.

For situations where the CanTree representing DB’ does
not fit into memory, recursive projections and partitioning
are required to break DB’ into smaller pieces. As a result,
additional performance overhead may incur.

S. Experimental Results

In the experiments, we used (i) several transaction
databases generated by the program developed at IBM Al-
maden Research Center [2] and (ii) some real-life databases
from UC Irvine Machine Learning Depository. The results
produced are consistent. So, for lack of space, we cite be-
low the experimental results based on an IBM transaction
database, which consists of 1M records with an average
transaction length of 10 items and a domain of 1000 items.

All experiments were run in a time-sharing environment
in a 1 GHz machine. The reported figures are based on the
average of multiple runs. Runtime includes CPU and I/Os;
it includes the time for both tree construction and frequent-
pattern mining steps. In the experiments, we mainly com-
pared the following algorithms that were implemented in C:

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

Runtime vs. minsup
1800 . . T T
o

" AFPIM B
FELINE/CATS tree -->-—-
1600 CanTree —— |

1400 4

1200 1

1000 1

800 1

Runtime (in seconds)

600 |- | g

1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Minimum support threshold (in percentage)

(a) Changes of minsup

0 L L L

Runtime vs. #updates
1200 T T T

AFPIM &
FELINE/CATS tree ---x---
anTree —+—

1000 - 4

800 - 1

Runtime (in seconds)
@
3
3
T
o
I

200 1

0 L L L L
0 1 2 3 4 5

Number of database updates

(c) Number of updates

Figure 5. Runtime: CanTree vs. the most

Runtime vs. DB/db percentage
800 T T T T T T
AFPIM -8
FELINE/CATS tree ---x---
0| CanTree —+—

700

a o

600 a 4

500 —

400 1

Runtime (in seconds)

200 1

100 1

0 L L L L L L L L L
10 20 30 40 50 60 70 80 920

Portion of database be DB (in percentage)

(b) DB = p% of the database D B’

Runtime vs. #transactions
160 T T T T

T
CanTree —+—

140

120 |

80 [

Runtime (in seconds)

60 [

40+

20 |

L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 L L L L

Size of database (in million transactions)

(d) Scale-up

relevant work for incremental mining.

(i) the FELINE algorithms with the CATS tree, (ii) the AF-
PIM algorithm (with the FP-tree), and (iii) the mining algo-
rithm with our proposed CanTree.

In the first experiment, we divided the transaction
database D B’ into the “original database” D B and the up-
date portion db (i.e., DB’ = DB U db). We tested how the
minsup values affect the runtime of the algorithms. The y-
axis of Figure 5(a) shows the runtime, and the x-axis shows
minsup. When minsup decreased, the runtime increased.
Note that FP-trees for the AFPIM algorithm were usually
smaller than CATS trees and CanTrees, because only “fre-
quent” items were kept in the FP-trees. When minsup de-
creased, the corresponding FP-trees became bigger and took
longer to build. Moreover, the lower the minsup, the higher
was the probability that (i) frequency order of items in the
tree got changed (which, in turns, led to adjustment of tree
nodes) and/or (ii) new items got introduced (which, in turns,
led to construction of a new tree). As for both CanTrees
and CATS trees, their construction was independent of min-
sup because they both kept all items in every transaction.
Among them, CATS trees took more time to build than
CanTrees due to extra computation in (i) swapping, merg-

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

ing, and splitting of tree nodes as well as (ii) searching of
common items and mergeable tree paths in CATS trees.

As for mining, both AFPIM and our proposal traversed
upwards to form projected databases (for frequent items).
Among the two, the AFPIM algorithm required less traver-
sal because the corresponding FP-trees were smaller. As
for the FELINE algorithm, it took longer because it needed
to traverse the corresponding CATS trees both upwards and
downwards when forming projected databases! Hence, al-
though CATS trees were slightly more compact (e.g., our
CanTree was 1.2 times bigger than CATS trees) than our
CanTrees, mining with our CanTrees could be faster (e.g.,
more than 1.2 times faster) than the FELINE algorithm with
CATS trees.

In the second experiment, we again divided DB’ into
DB and db so that DB be p% of DB’ and db be the re-
maining (100 — p)%. We varied the percentage p% from
10% to 90%. It was observed from Figure 5(b) that both
CATS trees and our proposed CanTrees were not affected
by the varying percentage values. However, for the AFPIM
algorithm, the higher the percentage p% (i.e., larger DB
and smaller db), the bigger was the FP-tree for DB. This

YF]',F.

COMPUTER
SOCIETY

means a higher probability for the swapping, merging, and
splitting of tree nodes (when the frequency order of items
got changed due to incremental updates). However, it also
means a lower probability for the introduction of new items
(i.e., when some infrequent items became “frequent” due to
incremental updates in such a way that the old tree did not
cover these items and new tree was needed). Hence, for low
p% (e.g., p < 40%), updates caused tree rebuild; for high
p% (e.g., p > 50%), updates required node adjustment.

In the third experiment (see Figure 5(c)), we divided
DB’ into DB and several update portions. We tested the
number of incremental updates on the runtime. The higher
the number of updates, the longer was the runtime for the
AFPIM algorithm. This was because frequent updates led to
a higher probability that (i) the item-frequency order before

[4]
[5]
[6]

[7]

[8]

[9]

[10]

R.J. Bayardo. Efficiently mining long patterns from databases. In
Proc. SIGMOD 1998, pp. 85-93.

F. Bonchi and C. Lucchese. On closed constrained frequent pattern
mining. In Proc. ICDM 2004, pp. 35-42.

S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: gen-
eralizing association rules to correlations. In Proc. SIGMOD 1997,
pp. 265-276.

C. Bucila, J. Gehrke, D. Kifer, and W.M. White. DualMiner: a dual-
pruning algorithm for itemsets with constraints. In Proc. SIGKDD
2002, pp. 42-51.

D.W. Cheung, J. Han, V.T. Ng, and C.Y. Wong. Maintenance of dis-
covered association rules in large databases: an incremental updating
technique. In Proc. ICDE 1996, pp. 106-114.

D.W. Cheung, S. D. Lee, and B. Kao. A general incremental tech-
nique for maintaining discovered association rules. In Proc. DASFAA
1997, pp. 185-194.

W. Cheung and O.R. Zaiane. Incremental mining of frequent patterns
without candidate generation or support constraint. In Proc. IDEAS
2003, pp. 111-116.

. . . . [11] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data min-
and after the update was different (i.e., swapping, merging, . : o o L .
O . : . ing using two-dimensional optimized association rules: scheme, al-
and splitting of tree nodes) and (ii) some new items were in- gorithms, and visualization. In Proc. SIGMOD 1996, pp. 13-23.
troduced after the update (which leads to tree rebuild). This [12] K. Gade, J. Wang, and G. Karypis. Efficient closed pattern mining
problem can be worsened when using a database with items n ﬂ}%;’rﬁ’;‘ce of tough block constraints. In Proc. SIGKDD 2004,
. . .. pp. 138-147.
from a larger domain ('e.g., 10,000 distinct dorpgm 1t(?ms). [13] J.Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
In the fourth experiment, we tested scalability with the generation. In Proc. SIGMOD 2000, pp. 1-12.
number of transactions. The results in Figure 5(d) show that [14] J. Hgn, J. Pei, Y. .Yln, and R. Mao. Mining frequent patterns without
.. ith d CanT: had li labilit candidate generation: a frequent-pattern tree approach. Data Mining
mining with our propose an lrees had linear scalability. and Knowledge Discovery, 8(1), pp. 53-87, Jan. 2004.
6. Conclusions [15] C. Hidber. Online association rule mining. In Proc. SIGMOD 1999,
* pp- 145-156.
A key contribution of this paper is to provide the user [16] H. Huang, X. Wu, and R. Relue. Association analysis with one scan
ith imple. but t ful. t truct f £ of databases. In Proc. ICDM 2002, pp. 629-632.
WIF a simple, but y e powerlul, ree structure . or cl- [17] J.-L. Koh and S.-F. Shieh. An efficient approach for maintaining as-
ficient FP-tree based incremental mining. Specifically, sociation rules based on adjusting FP-tree structures. In Proc. DAS-
we proposed and studied the novel structure of CanTree 8] fA\f/\ 5201?41;?417-4(2241.(S L U RT. Ne. Efficient d)
. .V.S. Lakshmanan, C.K.-S. Leung, and R.T. Ng. Efficient dynamic
(CANomcal.-order TREE). The tree captures the content of mining of constrained frequent sets. ACM TODS, 28(4), pp. 337-389,
the transaction database, and arranges tree nodes accord- Dec. 2003.
ing to some canonical order that is unaffected by Changes [19] C.K.-S. Leung. Interactive constrained frequent-pattern mining sys-
s " : : : tem. In Proc. IDEAS 2004, pp. 49-58.
in item frequency. _By ex,pl‘)l,tmg its nice properties, the [20] C.K.-S. Leung, L.V.S. Lakshmanan, and R.T. Ng. Exploiting suc-
CanTree can be easily maintained when database transac- cinct constraints using FP-trees. SIGKDD Explorations, 4(1), pp. 40—
tions are inserted, deleted, and/or modified. Specifically, 49, June 2002.
its maintenance does not require merging and/or splitting [21] CK.-S. Leung, R.T. Ng, and H. Mannila. OSSM: a segmentation
. . approach to optimize frequency counting. In Proc. ICDE 2002,
of tree nodes. It avoids the rescan of the entire updated pp. 583-592.
database or the reconstruction of a new tree for incremental [22] R.T.Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory min-
updating. Moreover, our proposed CanTree can also be used ;‘g anglg';lfg‘;)g I?Qt(igmizati&mzzf constrained associations Rules. In
N _ roc. , pp. 13-24.
for efficient incremental constrained mining of frequent pat (23] K-L. Ong, WK. Ne, and E.-P. Lim. FSSM: fast construction of the
terns. optimized segment support map. In Proc. DaWaK 2003, pp. 257—
266.
Acknowledgement [24] 1.S. Park, M.-S. Chen, and P:S. Yu. Using a hash-based method with
This project is partially sponsored by Science and Engi- g;ngﬁ(;i%g;nggﬁgsr 1H9119n71ng association rules. IEEE TKDE, 9(5),
neering Research Canada (NSERC) and The University of [25] J.Pei,J. Han, and L.V.S. Lakshmanan. Mining frequent itemsets with
Manitoba in the form of research grants. convertible constraints. In Proc. ICDE 2001, pp. 433-442.
[26] . Pei, J. Han, and R. Mao. CLOSET: an efficient algorithm for min-
Refel‘ences ing frequent closed itemsets. In Proc. DMKD 2000, pp. 21-30.
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules (27] S..Sfirawa.glt; S.I'FhomzisliandbR. Agrawal. .lnulagratm'g assoc&agon ;ule
between sets of items in large databases. In Proc. SIGMOD 1993, ?mm% W};t reSEIItGIOMnZD e;t;g;se Sy;iﬁ;m;.sj ternatives and tmplica-
» ions. In Proc. , pp. 343-354.
pp. 207-216. . . iy . [28] D. Tsur, J.D. Ullman, S. Abiteboul, C. Clifton, R. Motwani,
[2] R. Agrawal and R. Srikant. Fast algorithms for mining association o
) S. Nestorov, and A. Rosenthal. Query flocks: a generalization of
rules. In Proc. VLDB 1994, pp. 487-499. association-rule mining. In Proc. SIGMOD 1998, pp. 1-12
[3] N.F. Ayan, A.U. Tansel, and E. Arkun. An efficient algorithm to [29] M.J. Zaki and C.-J. Hsiao. CHARM: an efficient a71g0rithm for closed

update large itemsets with early pruning. In Proc. SIGKDD 1999,
pp. 287-291.

itemset mining. In Proc. SDM 2002.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05)
1550-4786/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

