
Efficient Discovery of Frequent Approximate Sequential Patterns

Feida Zhu† Xifeng Yan‡ Jiawei Han† Philip S. Yu‡

†University of Illinois at Urbana-Champaign ‡IBM T. J. Watson Research Center

{feidazhu, hanj}@uiuc.edu xifengyan, psyu@us.ibm.com

Abstract

We propose an efficient algorithm for mining frequent
approximate sequential patterns under the Hamming dis-
tance model. Our algorithm gains its efficiency by adopting
a “break-down-and-build-up” methodology. The “break-
down” is based on the observation that all occurrences of
a frequent pattern can be classified into groups, which we
call strands. We developed efficient algorithms to quickly
mine out all strands by iterative growth. In the “build-up”
stage, these strands are grouped up to form the support sets
from which all approximate patterns would be identified. A
salient feature of our algorithm is its ability to grow the
frequent patterns by iteratively assembling building blocks
of significant sizes in a local search fashion. By avoiding
incremental growth and global search, we achieve greater
efficiency without losing the completeness of the mining re-
sult. Our experimental studies demonstrate that our algo-
rithm is efficient in mining globally repeating approximate
sequential patterns that would have been missed by existing
methods.

1 Introduction

Frequent sequential pattern mining remains one of the
most important data mining tasks since its introduction in
[1]. With the ubiquity of sequential data, it has found broad
applications in customer analysis, query log analysis, finan-
cial stream data analysis and pattern discovery in genomic
DNA sequences in bioinformatics. Extensive research on
the topic has brought about general sequential pattern min-
ing algorithms like [11, 15, 7, 18, 13, 2] and constraint-
based ones like [4, 14]. Periodic pattern mining in temporal
data sequences has also been studied [6, 3].

However, all these mining algorithms follow the exact-
matching sequential pattern definition. It has been shown
that the capacity to accommodate approximation in the min-
ing process has become critical due to inherent noise and
imprecision in data, e.g., gene mutations in genomic DNA
sequence mining. The notion of approximate sequential

pattern has been proposed in [8], in which an algorithm
called ApproxMap is designed to mine consensus patterns.
While mining consensus patterns provides one way to pro-
duce compact mining result under general distance mea-
sures, it remains a challenge how to efficiently mine the
complete set of approximate sequential patterns under some
distance measure which is stricter yet equally useful in
many cases. The Hamming distance model, which counts
only mismatches, is one of such.

We look at bioinformatics for example. The identifica-
tion of repeats serves as a critical step in many biological
applications on a higher level such as a preprocessing step
for genome alignment, whole genome assembly and a post-
processing step for BLAST queries. For repeat families
that are relatively new in the evolution, the set of repeats
found under the Hamming distance model captures almost
the complete set. (2) The limited knowledge that biologists
currently have of these repeats makes it often hard for them
to evaluate the relative significance among different repeats.
It is therefore worth the effort to mine the complete set. Ex-
isting tools like RepeatMasker [12] only solve the problem
of pattern matching, rather than pattern discovery without
prior knowledge. (3) Many research works for the repeat-
ing patterns have been on an important subtype: the tandem
repeats [10], where repeating copies occur together in the
sequence. However, as shown by our experiments, these
methods would miss those patterns whose supporting oc-
currences appear globally in the entire data sequence, which
account for the majority of the complete set of frequent pat-
terns.

REPuter [9] is the closest effort towards mining fre-
quent approximate sequential patterns under the Hamming
distance model. Unfortunately, REPuter achieves its effi-
ciency by strictly relying on the suffix tree for constant-
time longest common prefix computation in seed extension.
Consequently, the type of approximate patterns that RE-
Puter is able to mine is inevitably limited. In particular,
it can only discover patterns with two occurrences and mis-
matches at identical positions across the support set. The
mining problems targeted by REPuter and us are essentially

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.75

743

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.75

743

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.75

743

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.75

751

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.75

751

two different ones.
To uncover more interesting approximate patterns in

DNA sequences, we establish a more general model for ap-
proximate sequential pattern mining problem. Our general
philosophy is a “break-down-and-build-up” one based on
the following observation. Although for an approximate
pattern, the sequences in its support set may have differ-
ent patterns of substitutions, they can in fact be classified
into groups, which we call strands. Each strand is a set of
sequences sharing a unified pattern representation together
with its support. The idea is that by “breaking down” the
support sets of the approximate patterns into strands, we are
able to design efficient algorithms to compute them. Using
a suffix-tree-based algorithm, we can in linear time mine
out the initial strands, which are all the exactly matching
repeats. These initial strands will then be iteratively as-
sembled into longer strands in a local search fashion, un-
til no longer ones can be found. In the second “build-up”
stage, different strands are then grouped based on their con-
stituting sequences to form a support set so that the frequent
approximate patterns would be identified. By avoiding in-
cremental growth and global search, we are able to achieve
great efficiency without losing the completeness of the min-
ing result. Instead of mining only the patterns repeating
within a sliding window of fixed sizes, our algorithm is able
to mine all globally repeating approximate patterns.

2 Problem Formulation

In our problem setting, we focus on mining approximate
sequential patterns under the Hamming distance model.
Hamming distance, which is defined for two strings of equal
length, is the number of substitutions required to change one
into the other.

Definition 1 (Hamming Distance) For two strings S =
〈s1, s2, . . . , sn〉 and P = 〈p1, p2, . . . , pn〉 of a same length
n, the Hamming distance between them is defined as

Dist(S, P) = |I|, I = {i|si �= pi, 1 ≤ i ≤ n}
The Hamming distance between two strings S and P is
denoted as Dist(S, P). In our model, two sequential pat-
terns are considered approximately the same if and only if
they are of equal length and their distance is within a user-
specified error tolerance. We therefore use string or sub-
string to refer to all sequential patterns in the rest of the
paper. Given a string S = 〈s1, s2, . . . , sn〉 of length n, an-
other string Z = 〈z1 . . . zm〉 is a substring of S if there ex-
ists an index i of S such that zj = si+j for all 1 ≤ j ≤ m.
In this case, S is a superstring of Z . We use |S| to denote
the length of a string S.

Given an input string S, we are interested in finding all
frequent approximate substrings of S, i.e., for each such

substring, the set of substrings that are considered approxi-
mately the same must be sufficiently large.

Definition 2 (Frequent Approximate Substring) Given a
string S, a substring P of S is a frequent approximate sub-
string if and only if there exists a set U of substrings of S
and for each W ∈ U , Dist(P, W) ≤ |P |δ, and |U | ≥ θ,
where θ is the minimum frequency threshold and δ is the
error tolerance threshold. U is called the support set of P ,
denoted as Psup.

Notice that U is represented as a set of indices of S as all
substrings in U share the same length as P .

As in frequent itemset mining, the definition of frequent
approximate substring also gives rise to redundancy in the
mining result. Consider the three substrings in Figure 1.

A T C C G T A C T A T G T T C A G T T G C A G C C AA T C C G T A C T A T G T T C A G T T G C A G C C A

A T C C G G A C T A T G A T C A G T T G C A G C C AA T C C G G A C T A T G A T C A G T T G C A G C C A

A T C C G A A C T A T G G T C A G T T G C A G C C AA T C C G A A C T A T G G T C A G T T G C A G C C A

Figure 1.
Suppose S1 is a frequent approximate substring, with its

distances to S2 and S3 being both 2 in this case. If we delete
the last character ′A′ from all three strings, the resulting
substring S1 is still a frequent approximate substring with
its distances to S2 and S3 unchanged. This remains true
as we delete more characters so long as the error tolerance
requirement is satisfied. It would be considered redundancy
in many cases if all such shorter substrings of S1 are also
reported. Ideally, we would like to report a substring only
when it can not be extended without changing its distance to
some substring in its support set. In the example of Figure 1,
we would like to report six frequent approximate substrings
as shown in Figure 2. We therefore define the closeness for
a frequent approximate substring.

ATCCG ATCCG

ATCCGTACTATG ATCCGTACTATG

ATCCGTACTATGTTCAGTTGCAGCCAATCCGTACTATGTTCAGTTGCAGCCA

ACTATG ACTATG TCAGTTGCAGCCA TCAGTTGCAGCCA
Gap=0

ACTATGTTCAGTTGCAGCCA ACTATGTTCAGTTGCAGCCA
Gap=1

Gap=2

Figure 2.

Definition 3 (Closed Frequent Approximate Substring)
Given a string S, a frequent approximate substring P of S
is closed if and only if there exists no frequent approximate
substring Z of S such that (1) Z is a superstring of P , (2)
there exists a bijection between Zsup and Psup such that
for each Si ∈ Psup, there exists a S′

i ∈ Zsup such that S′
i is

a superstring of Si, and (3) Dist(Z, S′
i) = Dist(P, Si) for

some Si ∈ Psup.

In this paper, we study the problem of mining all closed
frequent approximate substrings from a given data string.
For brevity, all frequent approximate substrings mined by
our algorithm are closed for the rest of the paper. A fre-
quent approximate substring will be abbreviated as a FAS.

744744744752752

Formally, the frequent approximate substring mining prob-
lem (FASM) is defined as follows.

Definition 4 (FASM) Given a string S, a minimum fre-
quency threshold θ and an error tolerance threshold δ, the
FASM problem is to find all closed frequent approximate
substring P of S.

3 Algorithm Design

In general, for a FAS P , consider any two substrings
W1 and W2 in Psup. Aligning W1 and W2, we ob-
serve an alternating sequence of maximal matching sub-
strings and gaps of mismatches Pattern(W1, W2) =
〈M1, g1, M2, g2,. . . ,Mk〉, where Mi, 1 ≤ i ≤ k denote
the maximal matching substrings shared by W1 and W2.
gi, 1 ≤ i < k denote the number of mismatches in the i-th
gap. Consider four substrings S1, S2, S3 and S4 as shown
in Figure 3.

A T C C G T A C A G T T C A G T A G C AA T C C G T A C A G T T C A G T A G C A

A T C T G C A C A G G T C A G C A G C AA T C T G C A C A G G T C A G C A G C A

A T C C G C A C A G G T C A G T A G C AA T C C G C A C A G G T C A G T A G C A

A T C A G C A C A G G T C A G G A G C AA T C A G C A C A G G T C A G G A G C A

Figure 3.
In this case, Pattern(S1, S2) =

〈ATCCG, 1, ACAG, 1, TCAGTTGCA〉. All four
substrings are of length 20. If the error tolerance threshold
δ = 0.1 and minimum frequency threshold θ = 4, then
S2 is a FAS since the other three substrings are within
Hamming distance 2 from S2. For each substring, the
bounding boxes indicate the parts that match exactly with
S2. We can therefore define the notion of a strand, which
is a set of substrings that share one same matching pattern.

Definition 5 A set U of substrings U = {S1, . . . , Sk}
is a strand if and only if for any two pairs of substrings
{Si1 , Sj1} and {Si2 , Sj2} of U , Pattern(Si1 , Sj1) =
Pattern(Si2 , Sj2).

By definition, all the substrings in a strand U share
the same alternating sequence of maximal matching sub-
strings and gaps of mismatches, which we call Pat(U).
We use |Pat(U)| to denote the length of the substrings
in U . We use Gap(U) to denote the number of gaps in
Pat(U) and Miss(U) to denote the number of total mis-
matches in Pat(U). Given a strand U with its corre-
sponding matching pattern Pat(U) = 〈M1, g1, . . . , Mk〉,
Dist(Si, Sj) = Miss(U) =

∑k−1
i=1 gi, for all Si, Sj ∈ U

and i �= j. All substrings in a strand share a same distance
from one another. Define Plist(U) to be the support set of
a strand U , i.e., Plist(U) is the set of indices where each
substring in U occurs. A strand U is represented by the pair
〈Pat(U), P list(U)〉.

We call a strand U valid if the distance between any
two substrings of U satisfy the user-specified error toler-
ance threshold, i.e., Miss(U) ≤ |Pat(U)|δ. Similar to the
notion of the closeness of a FAS, we have the definition for
the closeness of a strand. A strand U is closed if and only
if there exists no strand U ′ such that (1) there exists a bijec-
tion between the set of substrings of U and U ′ such that for
each P ∈ U , there is a P ′ ∈ U ′ and P ′ is a superstring of
P , and (2) Miss(U) = Miss(U ′).

A FAS could belong to multiple strands. For any given
FAS, the observation is that its support set is exactly the
union of all its closed valid strands.

We therefore have the following approach to decide if a
given substring P is a FAS: Find all the closed valid strands
of P and let the union of them be X . P is a FAS if and
only if the cardinality of X is at least θ. Consider the ex-
ample in Figure 3 in which the error tolerance is 0.1 and
minimum frequency threshold is 4. Both strands {S1, S2}
and {S2, S3, S4} are valid. Suppose these two strands are
also closed, then combining them we get a support set of
size 4, satisfying the frequency requirement. As such, S2 is
a FAS.

Our algorithm solves the FASM problem in two steps.

1. Growing Strand
Compute a set of closed valid strands initially. The
set of initial strands is the set of all maximal exact
repeats. More precisely, for each initial strand U ,
Pat(U) = 〈M1〉, Miss(U) = 0 and U is closed.
These initial strands are computed by InitStrand us-
ing the suffix tree of the input sequence S. Similar
approach has been used in REPuter [9] to mine exact
repeats. By a linear-time suffix tree implementation as
in [5], we are able to identify all initial strands in time
linear to the input size. To mine out all closed valid
strands, we iteratively call the following procedure to
grow the current set of strands until no new strands are
found: We scan the entire tape and, for each strand
encountered, checks on both ends to see if the cur-
rent strand can be grown by assembling neighboring
strands. Let the result set be X .

2. Grouping Strand
Once we have mined out all the closed valid strands in
the first step, we compute the support set for each fre-
quent approximate substring. The idea of grouping the
strands is the following. Given the set X of all closed
valid strands, we construct a substring relation graph
G from X . The vertex set is all the substrings in the
strands of X , each vertex representing a distinct sub-
string. There is an edge between two substrings if and
only if the Hamming distance between two substrings
is within the error tolerance. Since all the substrings in
one valid strand share the same distance among each

745745745753753

other and the distance is within the error tolerance, all
corresponding vertices in G form a clique. After scan-
ning all the strands in X , we would construct a graph G
which is a union of cliques. Then by our observation,
a substring is a frequent approximate substring if and
only if the degree of the corresponding vertex is greater
than or equal to the minimum frequency threshold.

We are able to prove that our algorithm would generate
the complete set of FASs. The sketch of the proof is as
follows. We first prove that we would generate all closed
valid strands by induction on the number of gaps of the
strands. Our observation that the support set of a FAS P
is the union of all sets of P ’s closed valid strands then tells
us that we could compute the support sets of all FASs and
identify them by our strand grouping algorithm. The formal
proofs are omitted due to space limit.

3.1 Local Search

One salient feature of our algorithm is that only local
search is performed when checking on both ends of a strand
when growing strands. We therefore need to determine the
distance to check, which we denote as d. If d is set to be
too big, then in the worst case, we would scan the entire
data string each time we check for a strand. The running
time would then be Ω(|X |2), where X is the set of all valid
strands. On the other hand, if d is set to be too small, we
could fail to guarantee the completeness of the mining re-
sult. Consider the following example in figure 4. Suppose
we have two valid strands U1 and U2 such that |Pat(U1)| =
20, Miss(U1) = 0 and |Pat(U2)| = 40, Miss(U2) = 0.
There is a gap of 7 mismatches between them. Suppose the
error tolerance is δ = 0.1. Notice that a valid strand U
can accommodate further mismatches on either ends up to
a distance of |Pat(U)|δ − Miss(U). Then U1 can accom-
modate d1 = 2 extra mismatches and U2 can accommodate
d2 = 4 extra mismatches. However, as Figure 4 shows, the
tricky part is that if we only search forward d1 from U1 and
backward d2 from U2, we would fail to identify the chance
to assemble them due to the fact that the gap is larger than
the sum of d1 and d2. Even if we search forward from U1

for a distance that doubles d1, we could still miss U2. For-
tunately, searching backward from U2 for a distance of 2d2

would let us reach U1.
Then how to decide on the value of d such that we would

guarantee the completeness of the mining result, and at the
same time, scan as small a portion of the data string as pos-
sible? It turns out we have the following theorem to help
determine the value for d.

Theorem 3.1 Given the error tolerance δ and a strand
U , searching for a distance d = 2(|Pat(U)|δ −
Miss(U))/(1 − δ) would guarantee the completeness of
the mining result.

U1 U2X XXXXXX

20 40

d1 d2

U1 U2X XXXXXX

20 40

2d1

U1 U2X XXXXXX

20 40

2d2

Figure 4. Assembling two strands U1, U2

Theorem 3.1 tells us that we don’t have to search too far
to guarantee the completeness. In fact, it is easy to observe
that we at most search twice the distance of an optimal algo-
rithm. Notice that any strand encountered within a distance
of d̂ = (|Pat(U)|δ −Miss(U))/(1− δ) can be assembled
with the current strand to form a new valid strand, since the
current strand itself can accommodate all the mismatches in
a gap of length d̂. As such to guarantee a complete mining
result, any algorithm would have to check at least a distance
of d̂. We therefore check at most twice the distance of an
optimal algorithm.

4 Performance Study

We used a real soybean genomic DNA sequence,
CloughBAC, for our experiment. CloughBAC is 103334
base pairs in length. When the error tolerance δ is set as 0.1
and the minimum frequency threshold θ is set as 3, there are
altogether 182046 closed approximate sequences of length
at least 5. The longest closed approximate sequence is of
length 995. Figure 5 shows the set of closed approximate

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Sequence Length

Num
ber

 of A
ppr

oxim
ate

Seq
uen

ces

20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Figure 5. Sequences of size up to 40 bps

sequences of size up to 40 while Figure 6 shows the rest of
the mining result, which are of size from 40 to 995. It can
be observed that, in this particular soybean genomic DNA
sequence, the approximate sequences are dense around the
size of 10 and become sparse from size 15 to form a long
tail.

We define the spread for an approximate sequence to be
the distance between the index of its first occurrence and

746746746754754

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Sequence Length

Num
ber

 of A
ppr

oxim
ate

Seq
uen

ces

Figure 6. Sequences of size from 40 to
1000 bps

that of its last occurrence. A globally repeating approxi-
mate sequence has a large spread since its occurrences are
not confined to a particular portion of the data sequence. As
such, the larger the spread, the harder it is to discover the se-
quence by a sliding-window-based method. The spreads of
all the approximate sequences in the mining result are plot-
ted in Figure 7. It is evident that the majority of them ac-
tually have spreads comparable to the length of the orginal
data sequence. The advantage of our mining approach com-
pared against a sliding-window-based one manifests itself
in the fact that even a sliding window half the size of the
original data sequence would discover all the occurrences
of only 30% of the complete mining result.

0 2 4 6 8 10

x 10
4

0

50

100

150

Num
ber o

f App
roxim

ate S
eque

nces

Spread

Figure 7. The spread of the mining result

0 0.5 1 1.5 2 2.5

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

Number of Output Approximate Sequences

Ru
nn

ing
 Tim

e (s
eco

nd
s)

Local Search

Global Search

Figure 8. Run time

Figure 8 shows the running time of our algorithm as
the number of output approximate sequence increases. It
is compared against the one without the local search tech-
nique to demonstrate its importance in boosting the min-

0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

350

400

450

Error Tolerance

Ru
nn

ing
 Tim

e(s
eco

nd
s)

0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

x 10
4

Nu
mb

er
of

Ou
tpu

t A
pp

rox
ima

te S
equ

enc
es

Figure 9. Run time with varied δ

0 5 10 15 20 25 30 35 40 45
50

55

60

65

70

75

80

85

90

95

100

Minimum Frequency Threshold

Ru
nn

ing
 Tim

e(s
eco

nd
s)

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7
x 10

4

Nu
mb

er
of

Ou
tpu

t A
pp

rox
ima

te S
equ

enc
es

Figure 10. Runtime with varied θ

ing efficiency. The running time of our algorithm is ob-
served to be linear in the output size. Figure 9 illustrates
the runtime performance with varied error tolerance δ. The
bar chart, with its y-axis on the right side of the figure,
shows the corresponding numbers of output sequences as
δ increases. More lenient error tolerance results in more
output sequences and consequently a longer running time.
Figure 10 illustrates the runtime performance with varied
minimum frequency threshold θ. The bar chart, with its y-
axis on the right side of the figure, shows the corresponding
numbers of output sequences as θ increases. Observe that as
the minimum frequency threshold increases, the output size
decreases sharply while the running time almost remains the
same. This is because regardless of the minimum frequency
threshold for the output, all sequences with at least two oc-
currences have to be computed during the strand growing
stage, which is responsible for most of the mining cost. It
is only in the strand grouping stage that a greater minimum
frequency threshold helps to reduce the running time. The
influence of θ on the mining cost is therefore less signifi-
cant.

5 Related Work

A succession of sequential pattern mining algorithms
have been proposed since [1], including [15], SPADE [18],
PrefixSpan [13] and SPAM [2]. There are also constraint-
based ones like [4, 14]. CloSpan [17] follows the candidate
maintenance-and-test approach and uses techniques like
CommonPrefix and Backward Sub-Pattern Pruning. BIDE
[16] improves scalability by avoiding candidate mainte-
nance and applying BI-Directional Extension. When ap-
proximation is taken into consideration in the frequent se-

747747747755755

quential pattern definition, the size of the mining result
could be prohibitively huge under a general distance mea-
sure. ApproxMap [8] approached this problem by min-
ing instead the consensus patterns, which are a subset of
long and representative patterns. Algorithms in the bioin-
formatics community have been focusing on approximate
pattern matching and generate popular tools like Repeat-
Masker [12]. Most of these algorithms target at finding tan-
dem repeats. REPuter [9] uses suffix tree to find maximal
exact repeats and employs a suffix-tree-based constant time
longest common prefix algorithm to extend them. However,
REPuter cannot discover patterns with more than two occur-
rences and mismatches present at different positions across
the support.

6 Conclusions

We propose the definition of closed frequent approxi-
mate sequential patterns to solve the problem of mining
the complete set of frequent approximate sequential pat-
tern mining under the Hamming distance. Our algorithm
is based on the notion of classifying a pattern’s support set
into strands. We combine a suffix-tree-based initial strand
mining and iterative strand growth. We adopt a local search
optimization technique to reduce time complexity which at
the same time guarantees the completeness of the mining
result. Our performance study shows that our algorithm is
able to mine out globally repeating approximate patterns in
biological genomic DNA data with great efficiency.

Acknowledgement

We are grateful to Prof. Matt Hudson and Kranthi Varala
for providing us with the genome sequence data and many
helpful discussions and suggestions.

References

[1] R. Agrawal and R. Srikant. Mining sequential pat-
terns. In ICDE’95, pages 3–14.

[2] J. Ayres, J. Flannick, J. E. Gehrke, and T. Yiu. Se-
quential pattern mining using bitmap representation.
In KDD’02, pages 429–435.

[3] C. Bettini, X. S. Wang, and S. Jajodia. Mining tem-
poral relationships with multiple granularities in time
sequences. Bull. Technical Committee on Data Engi-
neering, 21:32–38, 1998.

[4] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Se-
quential pattern mining with regular expression con-
straints. In VLDB’99, pages 223–234.

[5] D. Gusfield. Algorithms on Strings, Trees and Se-
quences, Computer Science and Computation Biol-
ogy. Cambridge University Press, 1997.

[6] J. Han, G. Dong, and Y. Yin. Efficient mining of
partial periodic patterns in time series database. In
ICDE’99, pages 106–115.

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. FreeSpan: Frequent pattern-projected
sequential pattern mining. In KDD’00, pages 355–
359.

[8] H.-C. Kum, J. Pei, W. Wang, and D. Duncan. Ap-
proxMap: Approximate mining of consensus sequen-
tial patterns. In SDM’03.

[9] S. Kurtz, J. Choudhuri, E. Ohlebusch, C. Schleier-
macher, J. Stoye, and R. Giegerich. Reputer: The
manifold applications of repeat analysis on a genomic
scale. In Nucleic Acids Research, number 22, pages
4633–4642, 2001.

[10] G. M. Landau and J. P. Schmidt. An algorithm for ap-
proximate tandem repeats. In Proceedings of the 4th
Annual Symposium on Combinatorial Pattern Match-
ing, number 684, pages 120–133,1993.

[11] F. Masseglia, F. Cathala, and P. Poncelet. The PSP
approach for mining sequential patterns. In PKDD’98,
pages 176–184.

[12] Institute for Systems Biology. Repeatmasker. In
http://www.repeatmasker.org/webrepeatmasker-
help.html, 2003.

[13] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining se-
quential patterns efficiently by prefix-projected pattern
growth. In ICDE’01, pages 215–224.

[14] J. Pei, J. Han, and W. Wang. Constraint-based sequen-
tial pattern mining in large databases. In CIKM’02,
pages 18–25.

[15] R. Srikant and R. Agrawal. Mining sequential pat-
terns: Generalizations and performance improve-
ments. In EDBT’96, pages 3–17.

[16] J. Wang and J. Han. BIDE: Efficient mining of fre-
quent closed sequences. In ICDE’04, pages 79–90.

[17] X. Yan, J. Han, and R. Afshar. CloSpan: Min-
ing closed sequential patterns in large datasets. In
SDM’03, pages 166–177.

[18] M. Zaki. SPADE: An efficient algorithm for min-
ing frequent sequences. Machine Learning, 40:31–60,
2001.

748748748756756

