
Visual Segmentation-Based Data Record Extraction from Web Documents

Longzhuang Li
Dept. of Computing Sciences

Texas A&M Uni.-Corpus Christi
lli@sci.tamucc.edu

 Yonghuai Liu
Dept. of Computer Science
Uni. of Wales, berystwyth

yyl@aber.ac.uk

Abel Obregon,
Matt Weatherston

Dept. of Computing Sciences
Texas A&M Uni.-Corpus Christi

Abstract

Semi-structured data records contained in the Web

pages provide useful information for shopping agents and
metasearch engines. In this paper, we present a visual
segmentation-based data record extraction (VSDR) method
to extract data records from those Web pages. VSDR
method first segments a Web page into semantic blocks
using the spatial closeness and visual resemblance of data
records, then neighboring and non-neighboring data
records are extracted based on a compress and collapse
technique. Experimental results show that unlike the
existing methods which only generate good results on their
test domains, VSDR is a general data record extraction
method that is able to produce quite stable and good
results on a wide range of Web pages.

1. Introduction

The World Wide Web has become one of the most
important information resources. Although most of the
information is in the form of unstructured text, a large
amount of semi-structured objects, called data records, are
contained on the Web. These Web pages are typically
created dynamically from the back-end database of the host
site. Identifying and extracting those data records in Web
pages becomes valuable because it not only enables us to
combine information from multiple Web sites to provide
useful service, such as comparative shopping and meta
search, but also rebuild the back-end database of the host
Web site.

Existing Web data extraction methods can be classified
into three categories according to their degree of
automation. The three categories are manual, semi-
automatic, and fully automatic methods. The manual
methods identify each data record by writing a program,
called a wrapper, which is based on a Web page’s specific
presentation layout or contents. These methods can not
scale to a large number of pages. The semi-automatic
methods rely on machine learning and human assistance to
separate objects. Human assistance makes these semi-
automatic methods highly time consuming and unsuitable
for the fast-changing Web pages. In addition, the induced
wrapper is not generalizeable to other Web pages with
different structures. More recently, fully automatic methods
without human involvement have attracted more attention.

The current fully automatic methods, such as MDR [3],
ViNTs [5], and STAVIES [4], perform well in the Web
pages of their test domains, but may produce poor results
on third party data sets, where most web pages are semi-
structured and the organization of web pages is extremely
different from each other. In this paper, a new effective
visual segmentation-based data record (VSDR) extraction
method is developed to automate the process. Data record
extraction based on visual segmentation is highly feasible
because people often view a Web page as different
semantic objects, such as navigational links, advertisement
bar, and data record, etc. Moreover, semantically similar
objects are usually clustered together and resemble each
other in the sense of human perception. As a result, the
spatial closeness and visual resemblance make it possible
to automatically segment the Web page into several
semantic parts [1]. VSDR is a quite general data extraction
method which produces good results on a wide range of
Web pages.

Given a Web page, the VSDR method consists of
following steps: (1) segment the page into visually and
semantically similar blocks; then build the hierarchical
visual structural tree of blocks; (2) remove the noisy blocks
such as navigational bar blocks, dropdown menu blocks,
etc.; and (3) in the remaining blocks, identify the data
records. Next, the above steps are discussed in more detail.

2. Semantic Web pages segmentation

In the paper, we adapt the VIPS algorithm [1] to
perform the initial semantic partition, and store the results
in a XML file. Similar to [1], a block is defined as a node
or a set of nodes in the DOM tree. The VIPS algorithm
employs HTML tag information to partition a Web page
into a set of blocks with each block containing related
information. In particular, various visual cues, such as font,
color, and size, are taken into account to achieve an
accurate content structure on the semantic level. VIPS first
extracts all the suitable nodes from the HTML DOM tree,
and then finds the separators between these nodes.

In Figure 1, a Web page is divided into two blocks
VB1-1(6) and VB1-2(9) (the number inside the parentheses
is the degree of coherence of the block and will be ignored
in the following discussion. For more detail, please see
[1]), and VB1-1 is further divided into VB1-1-1, VB1-1-2,
and VB1-1-3. VB1-1-1 mainly has a dropdown menu and a

5021-4244-1500-4/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on May 11, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

text form for search query input. VB1-1-2 consists of six
clickable text links such as computer/Electronics and Video
Game, etc. VB1-1-3 holds two blocks, VB1-1-3-1 and
VB1-1-3-2, each corresponding to a data record. The
corresponding block tree is shown in Figure 3 and more
detail will be discussed in section 2.1.

Figure 1. Web page segmentation.

The VIPS algorithm can not determine the data regions
or data record boundaries because it is not developed for
this purpose, but the VIPS block tree provides the
important semantic partition information of a Web page:

1. Similar data records are typically presented in one or
more contiguous regions, with one major region containing
most data records.

2. In a VIPS block tree, similar data records usually are
siblings, and a leaf or terminal block is not a data record
because a data record can be further partitioned into more
than one subblocks.

3. In a VIPS block tree, a data record is usually self-
contained in a subtree and contains at least two different
types of blocks.

2.1 Build the block tree

In this paper, a VIPS segmentation block is categorized
as one of the following eight types: text block (T), text link
block (TL) (which may include the non-anchor text around
the URL as well as several URLs), image block (I), image
link block (IL), dropdown menu block (DM), text box
block (TB), action button block (AB) including checkboxes
and radio buttons, and visual block (VB). In a VIPS block
tree, the first seven types of blocks (T, TL, I, IL, DM, TB,
and AB) are leaf or terminal nodes which can not be further
partitioned. The last type of blocks (VB) are internal nodes
which are further divided into several smaller VBs,

terminal blocks, or both. For example, in Figure 1, the
blocks, such as VB1-1, VB1-2, VB1-1-1, VB1-1-2, VB1-
1-3, VB1-1-3-1, and VB1-1-3-2, are VBs.

Figure 2. Segmentation of VB1-1-3-1 in Figure 1.

Figure 3. VIPS block tree of the Web page in Figure 1.
Before we discuss how to discover the data records in a

VIPS block tree, let us get in more details on the partition
of data record block VB1-1-3-1 in Figure 1. In Figure 2,
VB1-1-3-1 is partitioned into four blocks in left-to-right
order, a T with only a single digit 1, an IL, a VB, and a TL
with the anchor text compare prices. Of the partition of the
VB (from top), the first three and the last blocks are TLs,
the five blocks in the middle are Ts. The second and the
third TLs contain both the anchor text and the non-anchor
text. For example, the third TL consists of the non-anchor
text Author: and the anchor text Stephen R. Schach. The
last TL holds two links, All Editions and Similar Books.
Under the block tree hierarchy, all but the first blocks form
a VB, the second and the third TLs compose a VB, and the
middle five Ts form another VB. According to the above
analysis, the corresponding block subtree for VB1-1-3-1 is
shown in Figure 3. Similarly, the block subtree for VB1-1-
3-2 can be built (see Figure 3).

2.2 Post-process the output of VIPS algorithm

There are two problems with VIPS algorithm: (1) VIPS
stops partitioning process earlier when it should continue
on some Web pages; and (2) VIPS may partition two
visually similar data records into different block tree
structures.

503

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on May 11, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

We call the first problem “the pre-maturity problem”.
One example of the pre-maturity problem in VIPS lies in
the fact that it may regard a complex block containing
multiple different block types, such as T and TL, as a leaf
node. In this case, a leaf node may consist of only one data
record or contain several data records. Our solution is to
scan through each leaf node, and divide the leaf node into
one or several smaller regions according to their relative
physical location, especially the distance between two
neighboring lines. The heuristic used here is that the
content of the same data record should be closely presented
together. Then a divided region with multiple block types is
considered as an internal node and every block type is a
leaf node. For example, Figure 4(a) presents a leaf node,
which contains two data records. By calculating the
distance between two neighboring content lines, two spikes
are discovered with each corresponding to a potential
separator. Accordingly, three regions are identified (see
Figure 4(b)).

Figure 4. data region clustering.

There are two solutions for the second problem. The
first solution is to re-partition the data records to a similar
block tree structure. The second solution is that we keep
the data record partitions as they are, but we compute their
resemblance based on the string edit distance [2] by
skipping the internal nodes. In this paper, we choose the
second solution (For more detail, see section 4.2).

3. Identify noisy blocks

In the VSDR method, several heuristics are employed to
identify noisy blocks. The cleaning process begins with the
first-level subtrees, such as VB1-1 and VB1-2 in Figure 3.
We only retain the first-level subtrees containing at least
two sibling internal nodes, because it is observed that a
data record usually itself forms a VB and we need at least
two data records to do the extraction. The first-level
subtree such as VB1-2 in Figure 3 can be safely eliminated
because it has no internal nodes as its children and is
unlikely to contain any data records.

As for the rest of the first-level subtrees, they may still
only contain noise such as navigational bars/links, text
boxes, dropdown menus, action buttons, etc. The
navigational bar blocks, such as VB1-1-2 (see Figure 1 and

Figure 3), can be identified if the number of contiguous
link blocks is at least 5 and the ratio of the number of link
blocks (including both text links and image links) to the
number of all blocks in the same tree level is greater than a
specific threshold. The ratio is preset to 0.75 in our
experiments. These noisy subtrees are removed before
extracting data records.

Similarly, the visual blocks containing text boxes,
dropdown menus, and/or action buttons, and occupying a
relatively small area of the whole page, will also be deleted
as noise. For example, VB1-1-1 in Figure 1 is located at the
head area of the page and mainly consists of the
combination of dropdown menu, text boxes, action button,
as well as a list of links. The simple heuristics used in this
stage have been proved to be highly effective. With these
heuristics we can remove most noisy blocks to speed up the
data extraction procedure. As a matter of fact, there is only
one first-level subtree left after deleting noise from many
Web pages. In our case, only VB1-1-3 is left.

4. Data record extraction
4.1 Leaf node reduction

It is very common that even two similar data records in
the same segment may still have different number of
attributes. For example, in Figure 1, the second data record
(VB1-1-3-2) lacks the three attributes Edition, Date
published, and Number of pages existing in the first data
record (VB1-1-3-1). If the two subtrees VB1-1-3-1 and
VB1-1-3-2 are compared directly without any node
reduction, the similarity between them may become small.

Figure 5. Reduction of block VB1-1-3-1 in Figure 3.
The leaf node reduction process includes two

procedures: compress and collapse. In the compress stage,
all but one of the sibling leaf nodes of the same type in the
tree are removed. In the collapse stage, the internal nodes
(VBs) with one child are cut off and the only child is raised
up one level. This is a repeating process which will not
stop until there are no blocks to be compressed and
collapsed. For example, in Figure 4(a), the two sibling TLs
and five sibling Ts at the lowest level of the subtree VB1-
1-3-1 are compressed to one TL and one T, respectively
(see Figure 4(b)). Then the two VBs with only one child
are collapsed with the TL and the T attached to the parent
of the two deleted VBs (see Figure 4(c)). Similarly, the
subtree VB1-1-3-2 can be reduced.

504

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on May 11, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

4.2 Block similarity using edit distance

In this paper, we calculate the similarity between two
blocks by normalizing their edit distance [2,3]. The edit
distance of two blocks, B1 and B2, is defined as the
minimum number of edit operations needed to change B1
into B2, where the allowed edit operations are insertions,
deletions, and substitutions.

The similarity of two blocks is obtained by the
following formula:

))()(((
),(1),(

21

21
21 BLenBLenAvg

BBEDBBBS
+

−=

where the second term on the right hand side of the
equation is the normalized edit distance (dividing the edit
distance ED(B1, B2) by the average length of the two
blocks).

When we compute the similarity between two blocks,
we ignore all the internal nodes (VBs). For example, block
VB1-1-3-1 in Figure 5(c) is expressed as the string (T IL
TL TL T TL TL) in the depth-first traversal.

4.3 Identify data records in each block

This is a depth-first comparison process. The basic idea
is to traverse down the tree and compute the similarity
between each successive pair of internal nodes (VBs and
their subtrees) using edit distance. The pairs with close
resemblance are marked down as candidate data records.
Internal nodes not similar to each other are further explored
by going down one level and repeating the above pair wise
comparison if the height of the internal node is greater than
two. In the following discussion, comparing two internal
nodes means comparing two subtrees with the two internal
nodes as their roots respectively.

4.4 Extract neighboring data records

It is observed that similar data records are commonly
contained in the same internal node, and in most cases
those data records are siblings in the block tree. For similar
data records which are not siblings, after applying the
above leaf node reduction process to the internal node
reduction, it is highly likely that they become siblings
because the similar data records may be partitioned into
visual blocks at different levels of the block tree and
usually the level difference is as small as 1. For example, in
Figure 6(a), VB1-1-1-1, VB1-1-1-2, and VB1-1-2 are three
similar data records located at different levels of subtree
VB1-1. After comparing the two sibling subtrees VB1-1-1-
1 and VB1-1-1-2 and identifying them as two candidate
data records, the two subtrees VB1-1-1-1 and VB1-1-1-2
are compressed to VB1-1-1-1(2) (see Figure 6(b), number
2 in the parentheses is the number of occurrences of block

VB1-1-1-1) and collapsed to VB1-1-1 (see Figure 6(c)),
then the two subtrees VB1-1-1 and VB1-1-2 are compared
and reduced again. In particular, we keep tracking the
number of occurrences of reduced internal nodes. This
process is called the internal node reduction.

 Figure 6. Reduction of visual blocks.

Figure 7. Similar blocks with more than
one data record.

Sometimes a candidate data record may contain several
real data records. For example, in Figure 7, four similar
data records VB1-1-1-1~VB1-1-1-4 are partitioned under
two internal nodes VB1-1-1 and VB1-1-2 with VB1-1-1-
1~VB1-1-1-2 in VB1-1-1 and VB1-1-1-3~VB1-1-1-4 in
VB1-1-2 respectively. In the sibling comparison procedure
mentioned above, VB1-1-1 and VB1-1-2 are marked as the
candidate data records. The heuristic we use for this case is
if candidate data records do not have any leaf nodes as their
children but have at least two internal child nodes, we only
need to go down one more level and compare the siblings
again. If all siblings are similar, they are real data records.
Otherwise, their parent nodes are real data records. In
Figure 7, VB1-1-1-1~V1-1-1-2 and V1-1-1-3~V1-1-1-4
are compared respectively and each of them is finally
considered as a data record.

4.5 Extract non-neighboring data records

The current data extraction methods, such as MDR and
ViNTs, can not generate satisfactory results for this
scenario. Here, we have two cases to consider:

Case 1: Although similar data records are siblings, they
are not all neighboring to each other and are separated by
non-data record internal nodes or leaf nodes. For example,
in Figure 8(a), the data record D immediately next to two
Cs will be missing by simply applying the successive pair
wise sibling comparison. In Figure 8, each triangle
represents a subtree, and the letter inside the triangle is the
subtree type: C stands for category, D for data record, and
R for related content. Figure 8 can be interpreted as
follows: under the first category C (from left), there are two
date records Ds as well as some related information R. The
rest of the subtrees can be similarly interpreted. The
question here is how we discover which subtrees are data
records. Our solution consists of two steps: (1) count and
compress the neighboring subtrees of same type by using

505

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on May 11, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

the method in section 4.4 (see Figure 8(b), the number
inside the parentheses is the number of occurrence of
neighboring subtrees of the same type); (2) add the number
of occurrences (NOC) of each subtree type by additional
pair wise comparison. The subtree type with the biggest
NOC value is the one for data records. For example, in
Figure 8 the NOC of C is 3, D 5, and R 1 respectively. As
such, subtree type D are data records.

(a)

(b)

 Figure 8. An example of separated data records.
Finding the NOC of each subtree type in step 2 is in fact

very fast because we already know that the neighboring
subtrees are of a different structure. In particular, we do not
compare neighboring subtrees and exclude the similar
subtrees from further comparison. For example, in Figure
8(b) starting from the left-most subtree C(1), we compare
C(1)-R(1), C(1)-C(1), and C(1)-C(1) (see the dotted lines).
Here, the similarity of the first C(1)-C(1) pair and the
second C(1)-C(1) pair excludes D(1) and D(2),
respectively. From the result of the first round of
comparison, the NOC of C is 3 and the last two Cs are
excluded from future consideration. Then we move to the
second left-most subtree D(2), where we only have two
more comparison D(2)-D(1) and D(2)-D(2). The NOC of D
is added to 5 and again the last two Ds are removed from
the comparison list. For the third left-most subtree R(1), we
have no subtree left to compare.

A special scenario of this case is that we have the same
NOC for all the subtree types. For example, when we have
the interleaved occurrence of C and D under one internal
node (such as CDCDCD), the combination of C and D is
considered as a data record. An example of this scenario is
that the title and body of a data record are partitioned as
two neighboring sibling nodes.

 Case 2: This is a more complex case, where data
records may not be siblings as well as may not be at the
same level, but they are all under the same parent node. For
instance, in Figure 9, the triangle Ds are under different
subtrees and can not be reduced to siblings by conducting
the reduction process described in section 4.4. The basic
idea for this case is to gradually flatten the subtrees from
the top and count the NOC of subtrees for each type. This

process will not stop until all the different subtrees have
been reduced.

Figure 9. Another example of separated data records.

Figure 10. Identify data records by flattening subtrees.

Let us use Figure 9 as an example to illustrate the
flattening process. First, after collapsing the first level of
internal nodes (three sibling VBs) in Figure 9, we have the
subtrees in Figure 10(a). Based on the pair wise
comparison in Case 1 of section 4.4, we find that the NOC
of C is 3 (see Figure 10(b). Then we choose the subtree
with the largest height to flatten because it is most likely
that this subtree contains data records (see Figure 10(c)).
The NOC of different subtrees is shown in Figure 10(d).
VB(3) is our next choice to flatten because it is deeper than
both C(3) and D(3) and may still contain data records, so
we contract VB(3) again (see Figure 10(e)) and receive the
NOC of C, D, and R as 3, 6, and 3, respectively (see
Figure 10(f)). At this stage, all Ds are identified as data
records.

5. Experiments

In the experiments, we use three data sets to compare
the performance of our data VSDR method with the two
existing automatic systems, MDR and ViNTs.

The three data sets come from different resources. The
first data set (Data 1) is the DataSet 31 used by ViNTs. The
second data set (Data 2) is downloaded from the manually
labeled Testbed for Information Extraction from Deep Web
TBDW ver. 1.022. TBDW holds query results from 51
search engines, and there are five query result pages for

1 http://www.data.binghamton.edu:8080/vints/testbed.html
2 http://daisen.cc.kyushu-u.ac.jp/TBDW

506

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on May 11, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

each search engine. In Data 2, we only collect the first
result page (1.html) of each search engine. We gather the
third data set (Data 3) from the home pages listed in the
MDR paper [3] (MDR paper does not provide the URLs of
real data it tested). The number of Web pages for each of
the three data sets is shown in the third row of Table 1.

The performance measures we use to compare the three
methods are recall = Ec/Nt and precision = Ec/Et, where Ec
is the total number of correctly extracted data records, Et
the total number of records extracted, and Nt the total
number of data records contained in all the Web pages of a
data set.

Experimental results are shown in Table 1. For all three
data sets, VSDR achieves the best recall values, which are
97.0%, 96.0%, and 99.8% respectively. ViNTs method
comes second for Data 1 and Data 2, and third for Data 3
for the recall value. VSDR outperforms both MDR and
ViNTs because VSDR method considers multiple data
regions and extract non-neighboring data records as well
(see section 4.5). ViNTs only extracts data records from
one major data region and MDR misses many data records
although it searches through multiple data regions.

ViNTs has the best precision rate on Data 1 and Data 2,
but the worst on Data 3. VSDR ranks the second on Data 1
and Data 2, and first on Data 3. The reason is that the data
records in Data 1 and Data 2 are mostly presented in one
major data region. MDR suffers from generating too much
noise for all three data sets.

It is shown from Table 1 that none of the three methods
performs the best at all times in terms of recall and
precision. But VSDR produces very stable and good results
through a wide range of Web domains.

6. Related Works

MDR [3] directly compares the resemblance of HTML
tag strings to decide the data region. One problem with the
MDR method is that the result page may contain a lot of
noisy data such as link blocks which should be removed.
Another problem is that in some cases it cannot correctly

divide data records. Instead, it returns the whole data
regions. ViNTs [5] works best on search engine results.
The method assumes that the data records are in a
contiguous region. If there is noise (advertisement) in the
middle, the method classifies either the noise as data
records or entirely misses the data records because of noise
interruption. STAVIES [4] employs clustering techniques
to segment the Web pages and locate the region that
contains the data records as well as the boundaries
separating them. This method is restricted by using the
cardinality of common ancestors of two nodes as the

similarity measure.

7. Conclusion

In this paper, we discuss a visual segmentation-based
method to extract data records from Web pages. Our
experimental results show that none of the three methods
works the best all the time, but the VSDR method can
achieve stable and good results on a wide range of Web
pages.

8. References

[1] Cai, D., Yu, S., Wen, J., and Ma, W. VIPS: A vision-

based page segmentation algorithm. Microsoft
Technical Report MSR-TR-2003-79, 2003.

[2] Gusfield, D. Algorithms on strings, trees, and
sequence, Cambridge. 1997.

[3] Liu, B., Grossman, R., and Zhai, Y. Mining data
records in web pages. In Proc. of the ACM SIGKDD,
2003.

[4] Papadakis, N. K., etc. A system for information
extraction from unknown web data sources through
automatic web wrapper generation using clusting
techniques. IEEE TKDE, 17, 12 (Dec. 2005).

[5] Zhao, H., etc. Fully automatic wrapper generation for
search engines. In the 14th Intl. Conf. on WWW, 2005.

 Data 1 Data 2 Data 3
 MDR ViNTs VSDR MDR ViNTs VSDR MDR ViNTs VSD

R
Web pages 41 41 41 46 46 46 33 33 33
DRs 833 833 833 1004 1004 1004 605 605 605
Extracted DRs 1068 809 861 1130 962 1077 786 627 698
Correct DRs 686 800 808 609 940 964 532 318 604
Recall 82.4% 96.0% 97.0% 60.7% 93.6% 96.0% 87.9% 52.6% 99.8%
Precision 64.2% 98.9% 93.8% 53.9% 97.7% 89.5% 67.7% 50.7% 86.5%

 Table 1. Performance comparison of MDR, ViNTs, and VSDR on three data sets.

507

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on May 11, 2009 at 05:09 from IEEE Xplore. Restrictions apply.

