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Abstract 

 
Semi-structured data records contained in the Web 

pages provide useful information for shopping agents and 
metasearch engines. In this paper, we present a visual 
segmentation-based data record extraction (VSDR) method 
to extract data records from those Web pages. VSDR 
method first segments a Web page into semantic blocks 
using the spatial closeness and visual resemblance of data 
records, then neighboring and non-neighboring data 
records are extracted based on a compress and collapse 
technique. Experimental results show that unlike the 
existing methods which only generate good results on their 
test domains, VSDR is a general data record extraction 
method that is able to produce quite stable and good 
results on a wide range of Web pages. 

 
1. Introduction 
 

The World Wide Web has become one of the most 
important information resources. Although most of the 
information is in the form of unstructured text, a large 
amount of semi-structured objects, called data records, are 
contained on the Web. These Web pages are typically 
created dynamically from the back-end database of the host 
site. Identifying and extracting those data records in Web 
pages becomes valuable because it not only enables us to 
combine information from multiple Web sites to provide 
useful service, such as comparative shopping and meta 
search, but also rebuild the back-end database of the host 
Web site.  

Existing Web data extraction methods can be classified 
into three categories according to their degree of 
automation. The three categories are manual, semi-
automatic, and fully automatic methods. The manual 
methods identify each data record by writing a program, 
called a wrapper, which is based on a Web page’s specific 
presentation layout or contents. These methods can not 
scale to a large number of pages. The semi-automatic 
methods rely on machine learning and human assistance to 
separate objects. Human assistance makes these semi-
automatic methods highly time consuming and unsuitable 
for the fast-changing Web pages. In addition, the induced 
wrapper is not generalizeable to other Web pages with 
different structures. More recently, fully automatic methods 
without human involvement have attracted more attention.  

The current fully automatic methods, such as MDR [3], 
ViNTs [5], and STAVIES [4], perform well in the Web 
pages of their test domains, but may produce poor results 
on third party data sets, where most web pages are semi-
structured and the organization of web pages is extremely 
different from each other. In this paper, a new effective 
visual segmentation-based data record (VSDR) extraction 
method is developed to automate the process. Data record 
extraction based on visual segmentation is highly feasible 
because people often view a Web page as different 
semantic objects, such as navigational links, advertisement 
bar, and data record, etc. Moreover, semantically similar 
objects are usually clustered together and resemble each 
other in the sense of human perception. As a result, the 
spatial closeness and visual resemblance make it possible 
to automatically segment the Web page into several 
semantic parts [1]. VSDR is a quite general data extraction 
method which produces good results on a wide range of 
Web pages.  

Given a Web page, the VSDR method consists of 
following steps: (1) segment the page into visually and 
semantically similar blocks; then build the hierarchical 
visual structural tree of blocks; (2) remove the noisy blocks 
such as navigational bar blocks, dropdown menu blocks, 
etc.; and (3) in the remaining blocks, identify the data 
records. Next, the above steps are discussed in more detail. 
 
2. Semantic Web pages segmentation  
 

In the paper, we adapt the VIPS algorithm [1] to 
perform the initial semantic partition, and store the results 
in a XML file. Similar to [1], a block is defined as a node 
or a set of nodes in the DOM tree. The VIPS algorithm 
employs HTML tag information to partition a Web page 
into a set of blocks with each block containing related 
information. In particular, various visual cues, such as font, 
color, and size, are taken into account to achieve an 
accurate content structure on the semantic level. VIPS first 
extracts all the suitable nodes from the HTML DOM tree, 
and then finds the separators between these nodes.  

In Figure 1, a Web page is divided into two blocks 
VB1-1(6) and VB1-2(9) (the number inside the parentheses 
is the degree of coherence of the block and will be ignored 
in the following discussion. For more detail, please see 
[1]), and VB1-1 is further divided into VB1-1-1, VB1-1-2, 
and VB1-1-3. VB1-1-1 mainly has a dropdown menu and a 
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text form for search query input. VB1-1-2 consists of six 
clickable text links such as computer/Electronics and Video 
Game, etc. VB1-1-3 holds two blocks, VB1-1-3-1 and 
VB1-1-3-2, each corresponding to a data record. The 
corresponding block tree is shown in Figure 3 and more 
detail will be discussed in section 2.1. 

 
Figure 1. Web page segmentation. 

The VIPS algorithm can not determine the data regions 
or data record boundaries because it is not developed for 
this purpose, but the VIPS block tree provides the 
important semantic partition information of a Web page:  

1. Similar data records are typically presented in one or 
more contiguous regions, with one major region containing 
most data records.  

2. In a VIPS block tree, similar data records usually are 
siblings, and a leaf or terminal block is not a data record 
because a data record can be further partitioned into more 
than one subblocks.  

3. In a VIPS block tree, a data record is usually self-
contained in a subtree and contains at least two different 
types of blocks.   
 
2.1 Build the block tree 
 

In this paper, a VIPS segmentation block is categorized 
as one of the following eight types: text block (T), text link 
block (TL) (which may include the non-anchor text around 
the URL as well as several URLs), image block (I), image 
link block (IL), dropdown menu block (DM), text box 
block (TB), action button block (AB) including checkboxes 
and radio buttons, and visual block (VB). In a VIPS block 
tree, the first seven types of blocks (T, TL, I, IL, DM, TB, 
and AB) are leaf or terminal nodes which can not be further 
partitioned. The last type of blocks (VB) are internal nodes 
which are further divided into several smaller VBs, 

terminal blocks, or both. For example, in Figure 1, the 
blocks, such as VB1-1, VB1-2, VB1-1-1, VB1-1-2, VB1-
1-3, VB1-1-3-1, and VB1-1-3-2, are VBs.  

 
Figure 2. Segmentation of VB1-1-3-1 in Figure 1. 

Figure 3. VIPS block tree of the Web page in Figure 1. 
Before we discuss how to discover the data records in a 

VIPS block tree, let us get in more details on the partition 
of data record block VB1-1-3-1 in Figure 1. In Figure 2, 
VB1-1-3-1 is partitioned into four blocks in left-to-right 
order, a T with only a single digit 1, an IL, a VB, and a TL 
with the anchor text compare prices. Of the partition of the 
VB (from top), the first three and the last blocks are TLs, 
the five blocks in the middle are Ts. The second and the 
third TLs contain both the anchor text and the non-anchor 
text. For example, the third TL consists of the non-anchor 
text Author: and the anchor text Stephen R. Schach. The 
last TL holds two links, All Editions and Similar Books. 
Under the block tree hierarchy, all but the first blocks form 
a VB, the second and the third TLs compose a VB, and the 
middle five Ts form another VB. According to the above 
analysis, the corresponding block subtree for VB1-1-3-1 is 
shown in Figure 3. Similarly, the block subtree for VB1-1-
3-2 can be built (see Figure 3).  

 
2.2 Post-process the output of VIPS algorithm 
 

There are two problems with VIPS algorithm: (1) VIPS 
stops partitioning process earlier when it should continue 
on some Web pages; and (2) VIPS may partition two 
visually similar data records into different block tree 
structures.  
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We call the first problem “the pre-maturity problem”. 
One example of the pre-maturity problem in VIPS lies in 
the fact that it may regard a complex block containing 
multiple different block types, such as T and TL, as a leaf 
node. In this case, a leaf node may consist of only one data 
record or contain several data records. Our solution is to 
scan through each leaf node, and divide the leaf node into 
one or several smaller regions according to their relative 
physical location, especially the distance between two 
neighboring lines. The heuristic used here is that the 
content of the same data record should be closely presented 
together. Then a divided region with multiple block types is 
considered as an internal node and every block type is a 
leaf node. For example, Figure 4(a) presents a leaf node, 
which contains two data records. By calculating the 
distance between two neighboring content lines, two spikes 
are discovered with each corresponding to a potential 
separator. Accordingly, three regions are identified (see 
Figure 4(b)). 

 
Figure 4. data region clustering. 

There are two solutions for the second problem. The 
first solution is to re-partition the data records to a similar 
block tree structure. The second solution is that we keep 
the data record partitions as they are, but we compute their 
resemblance based on the string edit distance [2] by 
skipping the internal nodes. In this paper, we choose the 
second solution (For more detail, see section 4.2).  
 
3. Identify noisy blocks 
 

In the VSDR method, several heuristics are employed to 
identify noisy blocks. The cleaning process begins with the 
first-level subtrees, such as VB1-1 and VB1-2 in Figure 3. 
We only retain the first-level subtrees containing at least 
two sibling internal nodes, because it is observed that a 
data record usually itself forms a VB and we need at least 
two data records to do the extraction. The first-level 
subtree such as VB1-2 in Figure 3 can be safely eliminated 
because it has no internal nodes as its children and is 
unlikely to contain any data records. 

As for the rest of the first-level subtrees, they may still 
only contain noise such as navigational bars/links, text 
boxes, dropdown menus, action buttons, etc. The 
navigational bar blocks, such as VB1-1-2 (see Figure 1 and 

Figure 3), can be identified if the number of contiguous 
link blocks is at least 5 and the ratio of the number of link 
blocks (including both text links and image links) to the 
number of all blocks in the same tree level is greater than a 
specific threshold. The ratio is preset to 0.75 in our 
experiments. These noisy subtrees are removed before 
extracting data records.  

Similarly, the visual blocks containing text boxes, 
dropdown menus, and/or action buttons, and occupying a 
relatively small area of the whole page, will also be deleted 
as noise. For example, VB1-1-1 in Figure 1 is located at the 
head area of the page and mainly consists of the 
combination of dropdown menu, text boxes, action button, 
as well as a list of links. The simple heuristics used in this 
stage have been proved to be highly effective. With these 
heuristics we can remove most noisy blocks to speed up the 
data extraction procedure. As a matter of fact, there is only 
one first-level subtree left after deleting noise from many 
Web pages. In our case, only VB1-1-3 is left.  
 
4. Data record extraction 
4.1 Leaf node reduction 
 

It is very common that even two similar data records in 
the same segment may still have different number of 
attributes. For example, in Figure 1, the second data record 
(VB1-1-3-2) lacks the three attributes Edition, Date 
published, and Number of pages existing in the first data 
record (VB1-1-3-1). If the two subtrees VB1-1-3-1 and 
VB1-1-3-2 are compared directly without any node 
reduction, the similarity between them may become small. 

 
Figure 5.  Reduction of block VB1-1-3-1 in Figure 3. 
The leaf node reduction process includes two 

procedures: compress and collapse. In the compress stage, 
all but one of the sibling leaf nodes of the same type in the 
tree are removed. In the collapse stage, the internal nodes 
(VBs) with one child are cut off and the only child is raised 
up one level. This is a repeating process which will not 
stop until there are no blocks to be compressed and 
collapsed. For example, in Figure 4(a), the two sibling TLs 
and five sibling Ts at the lowest level of the subtree VB1-
1-3-1 are compressed to one TL and one T, respectively 
(see Figure 4(b)). Then the two VBs with only one child 
are collapsed with the TL and the T attached to the parent 
of the two deleted VBs (see Figure 4(c)). Similarly, the 
subtree VB1-1-3-2 can be reduced. 

504

Authorized licensed use limited to: NATIONAL TAIWAN NORMAL UNIVERSITY. Downloaded on May 11, 2009 at 05:09 from IEEE Xplore.  Restrictions apply.



 
4.2 Block similarity using edit distance 
 

In this paper, we calculate the similarity between two 
blocks by normalizing their edit distance [2,3]. The edit 
distance of two blocks, B1 and B2, is defined as the 
minimum number of edit operations needed to change B1 
into B2, where the allowed edit operations are insertions, 
deletions, and substitutions. 

The similarity of two blocks is obtained by the 
following formula: 
            

))()(((
),(1),(
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21
21 BLenBLenAvg

BBEDBBBS
+

−=  

where the second term on the right hand side of the 
equation is the normalized edit distance (dividing the edit 
distance ED(B1, B2) by the average length of the two 
blocks).  

When we compute the similarity between two blocks, 
we ignore all the internal nodes (VBs). For example, block 
VB1-1-3-1 in Figure 5(c) is expressed as the string (T IL 
TL TL T TL TL) in the depth-first traversal.  
   
4.3 Identify data records in each block 
 

This is a depth-first comparison process. The basic idea 
is to traverse down the tree and compute the similarity 
between each successive pair of internal nodes (VBs and 
their subtrees) using edit distance. The pairs with close 
resemblance are marked down as candidate data records. 
Internal nodes not similar to each other are further explored 
by going down one level and repeating the above pair wise 
comparison if the height of the internal node is greater than 
two. In the following discussion, comparing two internal 
nodes means comparing two subtrees with the two internal 
nodes as their roots respectively. 
 
4.4 Extract neighboring data records 
 

It is observed that similar data records are commonly 
contained in the same internal node, and in most cases 
those data records are siblings in the block tree. For similar 
data records which are not siblings, after applying the 
above leaf node reduction process to the internal node 
reduction, it is highly likely that they become siblings 
because the similar data records may be partitioned into 
visual blocks at different levels of the block tree and 
usually the level difference is as small as 1. For example, in 
Figure 6(a), VB1-1-1-1, VB1-1-1-2, and VB1-1-2 are three 
similar data records located at different levels of subtree 
VB1-1. After comparing the two sibling subtrees VB1-1-1-
1 and VB1-1-1-2 and identifying them as two candidate 
data records, the two subtrees VB1-1-1-1 and VB1-1-1-2 
are compressed to VB1-1-1-1(2) (see Figure 6(b), number 
2 in the parentheses is the number of occurrences of block 

VB1-1-1-1) and collapsed to VB1-1-1 (see Figure 6(c)), 
then the two subtrees VB1-1-1 and VB1-1-2 are compared 
and reduced again. In particular, we keep tracking the 
number of occurrences of reduced internal nodes. This 
process is called the internal node reduction.  

 
                    Figure 6. Reduction of visual blocks. 

Figure 7. Similar blocks with more than                       
one data record. 

Sometimes a candidate data record may contain several 
real data records. For example, in Figure 7, four similar 
data records VB1-1-1-1~VB1-1-1-4 are partitioned under 
two internal nodes VB1-1-1 and VB1-1-2 with VB1-1-1-
1~VB1-1-1-2 in VB1-1-1 and VB1-1-1-3~VB1-1-1-4 in 
VB1-1-2 respectively. In the sibling comparison procedure 
mentioned above, VB1-1-1 and VB1-1-2 are marked as the 
candidate data records. The heuristic we use for this case is 
if candidate data records do not have any leaf nodes as their 
children but have at least two internal child nodes, we only 
need to go down one more level and compare the siblings 
again. If all siblings are similar, they are real data records. 
Otherwise, their parent nodes are real data records. In 
Figure 7, VB1-1-1-1~V1-1-1-2 and V1-1-1-3~V1-1-1-4 
are compared respectively and each of them is finally 
considered as a data record. 
 
4.5 Extract non-neighboring data records 
 

The current data extraction methods, such as MDR and 
ViNTs, can not generate satisfactory results for this 
scenario. Here, we have two cases to consider: 

Case 1: Although similar data records are siblings, they 
are not all neighboring to each other and are separated by 
non-data record internal nodes or leaf nodes. For example, 
in Figure 8(a), the data record D immediately next to two 
Cs will be missing by simply applying the successive pair 
wise sibling comparison. In Figure 8, each triangle 
represents a subtree, and the letter inside the triangle is the 
subtree type: C stands for category, D for data record, and 
R for related content. Figure 8 can be interpreted as 
follows: under the first category C (from left), there are two 
date records Ds as well as some related information R. The 
rest of the subtrees can be similarly interpreted. The 
question here is how we discover which subtrees are data 
records. Our solution consists of two steps: (1) count and 
compress the neighboring subtrees of same type by using 
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the method in section 4.4 (see Figure 8(b), the number 
inside the parentheses is the number of occurrence of 
neighboring subtrees of the same type); (2) add the number 
of occurrences (NOC) of each subtree type by additional 
pair wise comparison. The subtree type with the biggest 
NOC value is the one for data records. For example, in 
Figure 8 the NOC of C is 3, D 5, and R 1 respectively. As 
such, subtree type D are data records. 

(a) 
 

 
(b) 

          Figure 8. An example of separated data records.    
Finding the NOC of each subtree type in step 2 is in fact 

very fast because we already know that the neighboring 
subtrees are of a different structure. In particular, we do not 
compare neighboring subtrees and exclude the similar 
subtrees from further comparison. For example, in Figure 
8(b) starting from the left-most subtree C(1), we compare 
C(1)-R(1), C(1)-C(1), and C(1)-C(1) (see the dotted lines). 
Here, the similarity of the first C(1)-C(1) pair and the 
second C(1)-C(1) pair excludes D(1) and D(2), 
respectively. From the result of the first round of 
comparison, the NOC of C is 3 and the last two Cs are 
excluded from future consideration. Then we move to the 
second left-most subtree D(2), where we only have two 
more comparison D(2)-D(1) and D(2)-D(2). The NOC of D 
is added to 5 and again the last two Ds are removed from 
the comparison list. For the third left-most subtree R(1), we 
have no subtree left to compare.  

A special scenario of this case is that we have the same 
NOC for all the subtree types. For example, when we have 
the interleaved occurrence of C and D under one internal 
node (such as CDCDCD), the combination of C and D is 
considered as a data record. An example of this scenario is 
that the title and body of a data record are partitioned as 
two neighboring sibling nodes.    

 Case 2: This is a more complex case, where data 
records may not be siblings as well as may not be at the 
same level, but they are all under the same parent node. For 
instance, in Figure 9, the triangle Ds are under different 
subtrees and can not be reduced to siblings by conducting 
the reduction process described in section 4.4. The basic 
idea for this case is to gradually flatten the subtrees from 
the top and count the NOC of subtrees for each type. This 

process will not stop until all the different subtrees have 
been reduced. 

 
Figure 9. Another example of separated data records. 

 
Figure 10. Identify data records by flattening subtrees. 

Let us use Figure 9 as an example to illustrate the 
flattening process. First, after collapsing the first level of 
internal nodes (three sibling VBs) in Figure 9, we have the 
subtrees in Figure 10(a). Based on the pair wise 
comparison in Case 1 of section 4.4, we find that the NOC 
of C is 3 (see Figure 10(b). Then we choose the subtree 
with the largest height to flatten because it is most likely 
that this subtree contains data records (see Figure 10(c)). 
The NOC of different subtrees is shown in Figure 10(d). 
VB(3) is our next choice to flatten because it is deeper than 
both C(3) and D(3) and may still contain data records, so 
we contract VB(3) again (see Figure 10(e)) and receive the 
NOC of  C, D, and R as 3, 6, and 3, respectively (see 
Figure 10(f)). At this stage, all Ds are identified as data 
records. 

 
5. Experiments 
 

In the experiments, we use three data sets to compare 
the performance of our data VSDR method with the two 
existing automatic systems, MDR and ViNTs.  

The three data sets come from different resources. The 
first data set (Data 1) is the DataSet 31 used by ViNTs. The 
second data set (Data 2) is downloaded from the manually 
labeled Testbed for Information Extraction from Deep Web 
TBDW ver. 1.022. TBDW holds query results from 51 
search engines, and there are five query result pages for 
                                                                 
1 http://www.data.binghamton.edu:8080/vints/testbed.html 
2 http://daisen.cc.kyushu-u.ac.jp/TBDW 
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each search engine. In Data 2, we only collect the first 
result page (1.html) of each search engine. We gather the 
third data set (Data 3) from the home pages listed in the 
MDR paper [3] (MDR paper does not provide the URLs of 
real data it tested). The number of Web pages for each of 
the three data sets is shown in the third row of Table 1. 

The performance measures we use to compare the three 
methods are recall = Ec/Nt and precision = Ec/Et, where Ec 
is the total number of correctly extracted data records, Et 
the total number of records extracted, and Nt the total 
number of data records contained in all the Web pages of a 
data set. 

 

Experimental results are shown in Table 1. For all three 
data sets, VSDR achieves the best recall values, which are 
97.0%, 96.0%, and 99.8% respectively. ViNTs method 
comes second for Data 1 and Data 2, and third for Data 3 
for the recall value. VSDR outperforms both MDR and 
ViNTs because VSDR method considers multiple data 
regions and extract non-neighboring data records as well 
(see section 4.5). ViNTs only extracts data records from 
one major data region and MDR misses many data records 
although it searches through multiple data regions.  

ViNTs has the best precision rate on Data 1 and Data 2, 
but the worst on Data 3. VSDR ranks the second on Data 1 
and Data 2, and first on Data 3. The reason is that  the data 
records in Data 1 and Data 2 are mostly presented in one 
major data region. MDR suffers from generating too much 
noise for all three data sets.  

It is shown from Table 1 that none of the three methods 
performs the best at all times in terms of recall and 
precision. But VSDR produces very stable and good results 
through a wide range of Web domains.     
 
6. Related Works 
 

MDR [3] directly compares the resemblance of HTML 
tag strings to decide the data region. One problem with the 
MDR method is that the result page may contain a lot of 
noisy data such as link blocks which should be removed. 
Another problem is that in some cases it cannot correctly 

divide data records. Instead, it returns the whole data 
regions. ViNTs [5] works best on search engine results. 
The method assumes that the data records are in a 
contiguous region. If there is noise (advertisement) in the 
middle, the method classifies either the noise as data 
records or entirely misses the data records because of noise 
interruption. STAVIES [4] employs clustering techniques 
to segment the Web pages and locate the region that 
contains the data records as well as the boundaries 
separating them. This method is restricted by using the 
cardinality of common ancestors of two nodes as the 

similarity measure.  
 
7. Conclusion 
 

In this paper, we discuss a visual segmentation-based 
method to extract data records from Web pages. Our 
experimental results show that none of the three methods 
works the best all the time, but the VSDR method can 
achieve stable and good results on a wide range of Web 
pages.  
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 Data 1 Data 2 Data 3 
 MDR ViNTs VSDR MDR ViNTs VSDR MDR ViNTs VSD

R 
# Web pages 41 41 41 46 46 46 33 33 33 
# DRs 833 833 833 1004 1004 1004 605 605 605 
# Extracted DRs 1068 809 861 1130 962 1077 786 627 698 
# Correct DRs 686 800 808 609 940 964 532 318 604 
Recall 82.4% 96.0% 97.0% 60.7% 93.6% 96.0% 87.9% 52.6% 99.8% 
Precision 64.2% 98.9% 93.8% 53.9% 97.7% 89.5% 67.7% 50.7% 86.5% 

               Table 1.  Performance comparison of MDR, ViNTs, and VSDR on three data sets.
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