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ABSTRACT
In this work we present topic diversification, a novel method
designed to balance and diversify personalized recommenda-
tion lists in order to reflect the user’s complete spectrum of
interests. Though being detrimental to average accuracy, we
show that our method improves user satisfaction with rec-
ommendation lists, in particular for lists generated using the
common item-based collaborative filtering algorithm.

Our work builds upon prior research on recommender sys-
tems, looking at properties of recommendation lists as en-
tities in their own right rather than specifically focusing on
the accuracy of individual recommendations. We introduce
the intra-list similarity metric to assess the topical diver-
sity of recommendation lists and the topic diversification
approach for decreasing the intra-list similarity. We evalu-
ate our method using book recommendation data, including
offline analysis on 361, 349 ratings and an online study in-
volving more than 2, 100 subjects.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Search—Information Filtering ; I.2.6 [Artifi-
cial Intelligence]: Learning—Knowledge Acquisition

General Terms
Algorithms, Experimentation, Human Factors, Measurement

Keywords
Collaborative filtering, diversification, accuracy, recommend-
er systems, metrics

1. INTRODUCTION
Recommender systems [23] intend to provide people with

recommendations of products they will appreciate, based on
their past preferences, history of purchase, and demographic
information. Many of the most successful systems make use
of collaborative filtering [27, 8, 11], and numerous commer-
cial systems, e.g., Amazon.com’s recommender [16], exploit
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these techniques to offer personalized recommendation lists
to their customers.

Though the accuracy of state-of-the-art collaborative fil-
tering systems, i.e., the probability that the active user1 will
appreciate the products recommended, is excellent, some im-
plications affecting user satisfaction have been observed in
practice. Thus, on Amazon.com (http://www.amazon.com),
many recommendations seem to be “similar” with respect to
content. For instance, customers that have purchased many
of Hermann Hesse’s prose may happen to obtain recom-
mendation lists where all top-5 entries contain books by
that respective author only. When considering pure accu-
racy, all these recommendations appear excellent since the
active user clearly appreciates books written by Hermann
Hesse. On the other hand, assuming that the active user
has several interests other than Hermann Hesse, e.g., his-
torical novels in general and books about world travel, the
recommended set of items appears poor, owing to its lack of
diversity.

Traditionally, recommender system projects have focused
on optimizing accuracy using metrics such as precision/recall
or mean absolute error. Now research has reached the point
where going beyond pure accuracy and toward real user ex-
perience becomes indispensable for further advances [10].

This work looks specifically at impacts of recommendation
lists, regarding them as entities in their own right rather
than mere aggregations of single and independent sugges-
tions.

1.1 Contributions
We address the afore-mentioned deficiencies by focusing

on techniques that are centered on real user satisfaction
rather than pure accuracy. The contributions we make in
this paper are the following:

• Topic diversification. We propose an approach to-
wards balancing top-N recommendation lists accord-
ing to the active user’s full range of interests. Our novel
method takes into consideration both the accuracy of
suggestions made, and the user’s extent of interest in
specific topics. Analyses of topic diversification’s im-
plications on user-based [11, 22] and item-based [26,
5] collaborative filtering are provided.

1The term “active user” refers to the person for whom rec-
ommendations are made.
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• Intra-list similarity metric. Regarding diversity as
an important ingredient to user satisfaction, metrics
able to measure that characteristic feature are required.
We propose the intra-list similarity metric as an effi-
cient means for measurement, complementing existing
accuracy metrics in their efforts to capture user satis-
faction.

• Accuracy versus satisfaction. There have been sev-
eral efforts in the past arguing that “accuracy does not
tell the whole story” [4, 12]. Nevertheless, no evidence
has been given to show that some aspects of actual
user satisfaction reach beyond accuracy. We close this
gap and provide analysis from large-scale online and
offline evaluations, matching results obtained from ac-
curacy metrics against actual user satisfaction and in-
vestigating interactions and deviations between both
concepts.

1.2 Organization
Our paper is organized as follows. We discuss collabora-

tive filtering and its two most prominent implementations
in Section 2. The subsequent section then briefly reports on
common evaluation metrics and the new intra-list similarity
metric. In Section 4, we present our method for diversify-
ing lists, describing its primary motivation and algorithmic
clockwork. Section 5 reports on our offline and online exper-
iments with topic diversification and provides ample discus-
sion of results obtained.

2. ON COLLABORATIVE FILTERING
Collaborative filtering (CF) still represents the most com-

monly adopted technique in crafting academic and commer-
cial [16] recommender systems. Its basic idea refers to mak-
ing recommendations based upon ratings that users have
assigned to products. Ratings can either be explicit, i.e., by
having the user state his opinion about a given product, or
implicit, when the mere act of purchasing or mentioning of
an item counts as an expression of appreciation. While im-
plicit ratings are generally more facile to collect, their usage
implies adding noise to the collected information [20].

2.1 User-based Collaborative Filtering
User-based CF has been explored in-depth during the last

ten years [29, 24, 14] and represents the most popular recom-
mendation algorithm [11], owing to its compelling simplicity
and excellent quality of recommendations.

CF operates on a set of users A = {a1, a2, . . . , an}, a set of
products B = {b1, b2, . . . , bm}, and partial rating functions
ri : B → [−1, +1]⊥ for each user ai. Negative values ri(bk)
denote utter dislike, while positive values express ai’s liking
of product bk. If ratings are implicit only, we represent them
by set Ri ⊆ B, equivalent to {bk ∈ B | ri(bk) 6= ⊥}.

The user-based CF’s working process can be broken down
into two major steps:

• Neighborhood formation. Assuming ai as the ac-
tive user, similarity values c(ai, aj) ∈ [−1, +1] for all
aj ∈ A \ {ai} are computed, based upon the similarity
of their respective rating functions ri, rj . In general,
Pearson correlation [29, 8] or cosine distance [11] are
used for computing c(ai, aj). The top-M most sim-
ilar users aj become members of ai’s neighborhood,
clique(ai) ⊆ A.

• Rating prediction. Taking all the products bk that
ai’s neighbors aj ∈ clique(ai) have rated and which are
new to ai, i.e., ri(bk) = ⊥, a prediction of liking wi(bk)
is produced. Value wi(bk) hereby depends on both the
similarity c(ai, aj) of voters aj with rj(bk) 6= ⊥, as well
as the ratings rj(bk) these neighbors aj assigned to bk.

Eventually, a list Pwi : {1, 2, . . . , N} → B of top-N recom-
mendations is computed, based upon predictions wi. Note
that function Pwi is injective and reflects recommendation
ranking in descending order, giving highest predictions first.

2.2 Item-based Collaborative Filtering
Item-based CF [13, 26, 5] has been gaining momentum

over the last five years by virtue of favorable computational
complexity characteristics and the ability to decouple the
model computation process from actual prediction making.
Specifically for cases where |A| � |B|, item-based CF’s com-
putational performance has been shown superior to user-
based CF [26]. Its success also extends to many commercial
recommender systems, such as Amazon.com’s [16].

As with user-based CF, recommendation making is based
upon ratings ri(bk) that users ai ∈ A provided for products
bk ∈ B. However, unlike user-based CF, similarity values c
are computed for items rather than users, hence c : B×B →
[−1, +1]. Roughly speaking, two items bk, be are similar, i.e.,
have large c(bk, be), if users who rate one of them tend to
rate the other, and if users tend to assign them identical
or similar ratings. Moreover, for each bk, its neighborhood
clique(bk) ⊆ B of top-M most similar items is defined.

Predictions wi(bk) are computed as follows:

wi(bk) =

∑
be ∈B′

k
(c(bk, be) · ri(be))∑

be ∈B′
k
|c(bk, be)|

, (1)

where

B′
k := {be | be ∈ clique(bk) ∧ ri(bk) 6= ⊥}

Intuitively, the approach tries to mimic real user behav-
ior, having user ai judge the value of an unknown product
bk by comparing the latter to known, similar items be and
considering how much ai appreciated these be.

The eventual computation of a top-N recommendation
list Pwi follows the user-based CF’s process, arranging rec-
ommendations according to wi in descending order.

3. EVALUATION METRICS
Evaluation metrics are essential in order to judge the qual-

ity and performance of recommender systems, even though
they are still in their infancies. Most evaluations concentrate
on accuracy measurements only and neglect other factors,
e.g., novelty and serendipity of recommendations, and the
diversity of the recommended list’s items.

The following sections give an outline of popular metrics.
An extensive survey of accuracy metrics is provided in [12].

3.1 Accuracy Metrics
Accuracy metrics have been defined first and foremost for

two major tasks:
First, to judge the accuracy of single predictions, i.e., how

much predictions wi(bk) for products bk deviate from ai’s ac-
tual ratings ri(bk). These metrics are particularly suited for
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tasks where predictions are displayed along with the prod-
uct, e.g., annotation in context [12].

Second, decision-support metrics evaluate the effective-
ness of helping users to select high-quality items from the
set of all products, generally supposing binary preferences.

3.1.1 Predictive Accuracy Metrics
Predictive accuracy metrics measure how close predicted

ratings come to true user ratings. Most prominent and widely
used [29, 11, 3, 9], mean absolute error (MAE) represents an
efficient means to measure the statistical accuracy of predic-
tions wi(bk) for sets Bi of products:

|E| =
∑

bk ∈Bi
|ri(bk)− wi(bk)|
|Bi|

(2)

Related to MAE, mean squared error (MSE) squares the
error before summing. Hence, large errors become much
more pronounced than small ones.

Very easy to implement, predictive accuracy metrics are
inapt for evaluating the quality of top-N recommendation
lists. Users only care about errors for high-rank products.
On the other hand, prediction errors for low-rank products
are unimportant, knowing that the user has no interest in
them anyway. However, MAE and MSE account for both
types of errors in exactly the same fashion.

3.1.2 Decision-Support Metrics
Precision and recall, both well-known from information

retrieval, do not consider predictions and their deviations
from actual ratings. They rather judge how relevant a set of
ranked recommendations is for the active user.

Before using these metrics for cross-validation, K-folding
is applied, dividing every user ai’s rated products bk ∈ Ri

into K disjoint slices of preferably equal size. Hereby, K− 1
randomly chosen slices form ai’s training set Rx

i . These rat-
ings then define ai’s profile from which final recommenda-
tions are computed. For recommendation generation, ai’s
residual slice (Ri \ Rx

i ) is retained and not used for predic-
tion. This slice, denoted T x

i , constitutes the test set, i.e.,
those products the recommenders intend to predict.

Sarwar [25] presents an adapted variant of recall, record-
ing the percentage of test set products b ∈ T x

i occurring in
recommendation list P x

i with respect to the overall number
of test set products |T x

i |:

Recall = 100 · |T
x
i ∩ =P x

i |
|T x

i |
(3)

Symbol =P x
i denotes the image of map P x

i , i.e., all items
part of the recommendation list.

Accordingly, precision represents the percentage of test
set products b ∈ T x

i occurring in P x
i with respect to the size

of the recommendation list:

Precision = 100 · |T
x
i ∩ =P x

i |
|=P x

i |
(4)

Breese et al. [3] introduce an interesting extension to re-
call, known as weighted recall or Breese score. The approach
takes into account the order of the top-N list, penalizing in-
correct recommendations less severely the further down the
list they occur. Penalty decreases with exponential decay.

Other popular decision-support metrics include ROC [28,
18, 9], the “receiver operating characteristic”. ROC mea-
sures the extent to which an information filtering system is
able to successfully distinguish between signal and noise.
Less frequently used, NDPM [2] compares two different,
weakly ordered rankings.

3.2 Beyond Accuracy
Though accuracy metrics are an important facet of useful-

ness, there are traits of user satisfaction they are unable to
capture. However, non-accuracy metrics have largely been
denied major research interest so far.

3.2.1 Coverage
Among all non-accuracy evaluation metrics, coverage has

been the most frequently used [11, 19, 9]. Coverage measures
the percentage of elements part of the problem domain for
which predictions can be made.

3.2.2 Novelty and Serendipity
Some recommenders produce highly accurate results that

are still useless in practice, e.g., suggesting bananas to cus-
tomers in grocery stores. Though being highly accurate, note
that almost everybody likes and buys bananas. Hence, their
recommending appears far too obvious and of little help to
the shopper.

Novelty and serendipity metrics thus measure the “non-
obviousness” of recommendations made, avoiding “cherry-
picking” [12]. For some simple measure of serendipity, take
the average popularity of recommended items. Lower scores
obtained denote higher serendipity.

3.3 Intra-List Similarity
We present a new metric that intends to capture the diver-

sity of a list. Hereby, diversity may refer to all kinds of fea-
tures, e.g., genre, author, and other discerning characteris-
tics. Based upon an arbitrary function c◦ : B×B → [−1, +1]
measuring the similarity c◦(bk, be) between products bk, be

according to some custom-defined criterion, we define intra-
list similarity for ai’s list Pwi as follows:

ILS(Pwi) =

∑
bk ∈=Pwi

∑
be ∈=Pwi

, bk 6=be

c◦(bk, be)

2
(5)

Higher scores denote lower diversity. An interesting math-
ematical feature of ILS(Pwi) we are referring to in later sec-
tions is permutation-insensitivity, i.e., let SN be the sym-
metric group of all permutations on N = |Pwi | symbols:

∀σi, σj ∈ SN : ILS(Pwi ◦ σi) = ILS(Pwi ◦ σj) (6)

Hence, simply rearranging positions of recommendations
in a top-N list Pwi does not affect Pwi ’s intra-list similarity.

4. TOPIC DIVERSIFICATION
One major issue with accuracy metrics is their inability

to capture the broader aspects of user satisfaction, hiding
several blatant flaws in existing systems [17]. For instance,
suggesting a list of very similar items, e.g., with respect to
the author, genre, or topic, may be of little use for the user,
even though this list’s average accuracy might be high.

The issue has been perceived by other researchers before,
coined “portfolio effect” by Ali and van Stam [1]. We believe
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that item-based CF systems in particular are susceptible to
that effect. Reports from the item-based TV recommender
TiVo [1], as well as personal experiences with Amazon.com’s
recommender, also item-based [16], back our conjecture. For
instance, one of this paper’s authors only gets recommenda-
tions for Heinlein’s books, another complained about all his
suggested books being Tolkien’s writings.

Reasons for negative ramifications on user satisfaction im-
plied by portfolio effects are well-understood and have been
studied extensively in economics, termed “law of diminishing
marginal returns” [30]. The law describes effects of satura-
tion that steadily decrease the incremental utility of prod-
ucts p when acquired or consumed over and over again. For
example, suppose you are offered your favorite drink. Let
p1 denote the price you are willing to pay for that product.
Assuming your are offered a second glass of that particular
drink, the amount p2 of money you are inclined to spend
will be lower, i.e., p1 > p2. Same for p3, p4, and so forth.

We propose an approach we call topic diversification to
deal with the problem at hand and make recommended lists
more diverse and thus more useful. Our method represents
an extension to existing recommender algorithms and is ap-
plied on top of recommendation lists.

4.1 Taxonomy-based Similarity Metric
Function c∗ : 2B × 2B → [−1, +1], quantifying the simi-

larity between two product sets, forms an essential part of
topic diversification. We instantiate c∗ with our metric for
taxonomy-driven filtering [33], though other content-based
similarity measures may appear likewise suitable. Our met-
ric computes the similarity between product sets based upon
their classification. Each product belongs to one or more
classes that are hierarchically arranged in classification tax-
onomies, describing the products in machine-readable ways.

Classification taxonomies exist for various domains. Ama-
zon.com crafts very large taxonomies for books, DVDs, CDs,
electronic goods, and apparel. See Figure 1 for one sam-
ple taxonomy. Moreover, all products on Amazon.com bear
content descriptions relating to these domain taxonomies.
Featured topics could include author, genre, and audience.

4.2 Topic Diversification Algorithm
Algorithm 1 shows the complete topic diversification algo-

rithm, a brief textual sketch is given in the next paragraphs.
Function Pwi∗ denotes the new recommendation list, re-

sulting from applying topic diversification. For every list en-
try z ∈ [2, N ], we collect those products b from the candidate
products set Bi that do not occur in positions o < z in Pwi∗
and compute their similarity with set {Pwi∗(k) | k ∈ [1, z[ },
which contains all new recommendations preceding rank z.

Sorting all products b according to c∗(b) in reverse order,
we obtain the dissimilarity rank P rev

c∗ . This rank is then
merged with the original recommendation rank Pwi accord-
ing to diversification factor ΘF , yielding final rank Pwi∗.
Factor ΘF defines the impact that dissimilarity rank P rev

c∗

exerts on the eventual overall output. Large ΘF ∈ [0.5, 1] fa-
vors diversification over ai’s original relevance order, while
low ΘF ∈ [0, 0.5[ produces recommendation lists closer to
the original rank Pwi . For experimental analysis, we used
diversification factors ΘF ∈ [0, 0.9].

Note that ordered input lists Pwi must be considerably
larger than the final top-N list. For our later experiments, we
used top-50 input lists for eventual top-10 recommendations.

procedure diversify (Pwi , ΘF ) {
Bi ← =Pwi ; Pwi∗(1)← Pwi(1);

for z ← 2 to N do

set B′
i ← Bi \ {Pwi∗(k) | k ∈ [1, z[ };

∀b ∈ B′: compute c∗({b}, {Pwi∗(k) | k ∈ [1, z[ });
compute Pc∗ : {1, 2, . . . , |B′

i|} → B′
i using c∗;

for all b ∈ B′
i do

P rev−1

c∗ (b)← |B′
i| − P−1

c∗ (b);

w∗
i (b)← P−1

wi
(b) · (1−ΘF ) + P rev−1

c∗ (b) ·ΘF ;

end do

Pwi∗(z)← min{w∗
i (b) | b ∈ B′

i};
end do

return Pwi∗;
}

Algorithm 1: Sequential topic diversification

4.3 Recommendation Dependency
In order to implement topic diversification, we assume

that recommended products Pwi(o) and Pwi(p), o, p ∈ N,
along with their content descriptions, effectively do exert an
impact on each other, which is commonly ignored by ex-
isting approaches: usually, only relevance weight ordering
o < p⇒ wi(Pwi(o)) ≥ wi(Pwi(p)) must hold for recommen-
dation list items, no other dependencies are assumed.

In case of topic diversification, recommendation interde-
pendence means that an item b’s current dissimilarity rank
with respect to preceding recommendations plays an impor-
tant role and may influence the new ranking.

4.4 Osmotic Pressure Analogy
The effect of dissimilarity bears traits similar to that of os-

motic pressure and selective permeability known from molec-
ular biology [31]. Steady insertion of products bo, taken from
one specific area of interest do, into the recommendation
list equates to the passing of molecules from one specific
substance through the cell membrane into cytoplasm. With
increasing concentration of do, owing to the membrane’s se-
lective permeability, the pressure for molecules b from other
substances d rises. When pressure gets sufficiently high for
one given topic dp, its best products bp may “diffuse” into
the recommendation list, even though their original rank
P−1

wi
(b) might be inferior to candidates from the prevailing

domain do. Consequently, pressure for dp decreases, paving
the way for another domain for which pressure peaks.

Topic diversification hence resembles the membrane’s se-
lective permeability, which allows cells to maintain their in-
ternal composition of substances at required levels.

5. EMPIRICAL ANALYSIS
We conducted offline evaluations to understand the ram-

ifications of topic diversification on accuracy metrics, and
online analysis to investigate how our method affects ac-
tual user satisfaction. We applied topic diversification with
ΘF ∈ {0, 0.1, 0.2, . . . 0.9} to lists generated by both user-
based CF and item-based CF, observing effects that occur
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Figure 1: Fragment from the Amazon.com book taxonomy

when steadily increasing ΘF and analyzing how both ap-
proaches respond to diversification.

5.1 Dataset Design
We based online and offline analyses on data we gathered

from BookCrossing (http://www.bookcrossing.com). The lat-
ter community caters for book lovers exchanging books all
around the world and sharing their experiences with others.

5.1.1 Data Collection
In a 4-week crawl, we collected data on 278, 858 members

of BookCrossing and 1, 157, 112 ratings, both implicit and
explicit, referring to 271, 379 distinct ISBNs. Invalid ISBNs
were excluded from the outset.

The complete BookCrossing dataset, featuring fully anon-
ymized information, is available via the first author’s home-
page (http://www.informatik.uni-freiburg.de/∼cziegler).

Next, we mined Amazon.com’s book taxonomy, compris-
ing 13,525 distinct topics. In order to be able to apply topic
diversification, we mined content information, focusing on
taxonomic descriptions that relate books to taxonomy nodes
from Amazon.com. Since many books on BookCrossing refer
to rare, non-English books, or outdated titles not in print
anymore, we were able to garner background knowledge for
only 175, 721 books. In total, 466, 573 topic descriptors were
found, giving an average of 2.66 topics per book.

5.1.2 Condensation Steps
Owing to the BookCrossing dataset’s extreme sparsity, we

decided to further condense the set in order to obtain more
meaningful results from CF algorithms when computing rec-
ommendations. Hence, we discarded all books missing taxo-
nomic descriptions, along with all ratings referring to them.
Next, we also removed book titles with fewer than 20 overall
mentions. Only community members with at least 5 ratings
each were kept.

The resulting dataset’s dimensions were considerably more
moderate, featuring 10, 339 users, 6, 708 books, and 361, 349
book ratings.

5.2 Offline Experiments
We performed offline experiments comparing precision, re-

call, and intra-list similarity scores for 20 different recom-
mendation list setups. Half these recommendation lists were
based upon user-based CF with different degrees of diver-
sification, the others on item-based CF. Note that we did
not compute MAE metric values since we are dealing with
implicit rather than explicit ratings.

5.2.1 Evaluation Framework Setup
For cross-validation of precision and recall metrics of all

10, 339 users, we adopted K-folding with parameter K = 4.
Hence, rating profiles Ri were effectively split into training
sets Rx

i and test sets T x
i , x ∈ {1, . . . , 4}, at a ratio of 3 : 1.

For each of the 41, 356 different training sets, we computed
20 top-10 recommendation lists.

To generate the diversified lists, we computed top-50 lists
based upon pure, i.e., non-diversified, item-based CF and
pure user-based CF. The high-performance Suggest recom-
mender engine2 was used to compute these base case lists.
Next, we applied the diversification algorithm to both base
cases, applying ΘF factors ranging from 10% up to 90%. For
evaluation, all lists were truncated to contain 10 books only.

5.2.2 Result Analysis
We were interested in seeing how accuracy, captured by

precision and recall, behaves when increasing ΘF from 0.1 up
to 0.9. Since topic diversification may make books with high
predicted accuracy trickle down the list, we hypothesized
that accuracy will deteriorate for ΘF → 0.9. Moreover, in
order to find out if our novel algorithm has any significant,
positive effects on the diversity of items featured, we also
applied our intra-list similarity metric. An overlap analysis
for diversified lists, ΘF ≥ 0.1, versus their respective non-
diversified pendants indicates how many items stayed the
same for increasing diversification factors.

5.2.2.1 Precision and Recall.
First, we analyzed precision and recall scores for both non-

diversified base cases, i.e., when ΘF = 0. Table 1 states that
user-based and item-based CF exhibit almost identical accu-
racy, indicated by precision values. Their recall values differ

2Visit http://www-users.cs.umn.edu/∼karypis/suggest/.
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Figure 2: Precision (a) and recall (b) for increasing ΘF

Item-based CF User-based CF

Precision 3.64 3.69
Recall 7.32 5.76

Table 1: Precision/recall for non-diversified CF

considerably, hinting at deviating behavior with respect to
the types of users they are scoring for.

Next, we analyzed the behavior of user-based and item-
based CF when steadily increasing ΘF by increments of 10%,
depicted in Figure 2. The two charts reveal that diversifica-
tion has detrimental effects on both metrics and on both CF
algorithms. Interestingly, corresponding precision and recall
curves have almost identical shape.

The loss in accuracy is more pronounced for item-based
than for user-based CF. Furthermore, for either metric and
either CF algorithm, the drop is most distinctive for ΘF ∈
[0.2, 0.4]. For lower ΘF , negative impacts on accuracy are
marginal. We believe this last observation due to the fact
that precision and recall are permutation-insensitive, i.e.,
the mere order of recommendations within a top-N list does
not influence the metric value, as opposed to Breese score [3,
12]. However, for low ΘF , the pressure that the dissimilarity
rank exerts on the top-N list’s makeup is still too weak to
make many new items diffuse into the top-N list. Hence, we
conjecture that rather the positions of current top-N items
change, which does not affect either precision or recall.

5.2.2.2 Intra-List Similarity.
Knowing that our diversification method exerts a signif-

icant, negative impact on accuracy metrics, we wanted to
know how our approach affected the intra-list similarity mea-
sure. Similar to the precision and recall experiments, we
computed metric values for user-based and item-based CF
with ΘF ∈ [0, 0.9] each. Hereby, we instantiated the intra-
list similarity metric function c◦ with our taxonomy-driven

metric c∗. Results obtained from intra-list similarity analysis
are given in Figure 3(a).

The topic diversification method considerably lowers the
pairwise similarity between list items, thus making top-N
recommendation lists more diverse. Diversification appears
to affect item-based CF stronger than its user-based coun-
terpart, in line with our findings about precision and recall.
For lower ΘF , curves are less steep than for ΘF ∈ [0.2, 0.4],
which also well aligns with precision and recall analysis.
Again, the latter phenomenon can be explained by one of
the metric’s inherent features, i.e., like precision and recall,
intra-list similarity is permutation-insensitive.

5.2.2.3 Original List Overlap.
Figure 3(b) shows the number of recommended items stay-

ing the same when increasing ΘF with respect to the original
list’s content. Both curves exhibit roughly linear shapes, be-
ing less steep for low ΘF , though. Interestingly, for factors
ΘF ≤ 0.4, at most 3 recommendations change on average.

5.2.2.4 Conclusion.
We found that diversification appears detrimental to both

user-based and item-based CF along precision and recall
metrics. In fact, this outcome aligns with our expectations,
considering the nature of those two accuracy metrics and
the way that the topic diversification method works. More-
over, we found that item-based CF seems more susceptible
to topic diversification than user-based CF, backed by re-
sults from precision, recall and intra-list similarity metric
analysis.

5.3 Online Experiments
Offline experiments helped us in understanding the impli-

cations of topic diversification on both CF algorithms. We
could also observe that the effects of our approach are dif-
ferent on different algorithms. However, knowing about the
deficiencies of accuracy metrics, we wanted to assess actual
user satisfaction for various degrees of diversification, thus
necessitating an online survey.

For the online study, we computed each recommendation
list type anew for users in the denser BookCrossing dataset,
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Figure 3: Intra-list similarity behavior (a) and overlap with original list (b) for increasing ΘF

though without K-folding. In cooperation with BookCross-
ing, we mailed all eligible users via the community mailing
system, asking them to participate in our online study. Each
mail contained a personal link that would direct the user to
our online survey pages. In order to make sure that only
the users themselves would complete their survey, links con-
tained unique, encrypted access codes.

During the 3-week survey phase, 2, 125 users participated
and completed the study.

5.3.1 Survey Outline and Setup
The survey consisted of several screens that would tell

the prospective participant about this study’s nature and
his task, show all his ratings used for making recommen-
dations, and finally present a top-10 recommendation list,
asking several questions thereafter.

For each book, users could state their interest on a 5-point
rating scale. Scales ranged from “not much” to “very much”,
mapped to values 1 to 4, and offered the user to indicate that
he had already read the book, mapped to value 5. In order to
successfully complete the study, users were not required to
rate all their top-10 recommendations. Neutral values were
assumed for non-votes instead. However, we required users
to answer all further questions, concerning the list as a whole
rather than its single recommendations, before submitting
their results. We embedded those questions we were actually
keen about knowing into ones of lesser importance, in order
to conceal our intentions and not bias users.

The one top-10 recommendation list for each user was cho-
sen among 12 candidate lists, either user-based CF or item-
based with ΘF ∈ {0, 0.3, 0.4, 0.5, 0.7, 0.9} each. We opted for
those 12 instead of all 20 list types in order to acquire enough
users completing the survey for each slot. The assignment
of a specific list to the current user was done dynamically,
at the time of the participant entering the survey, and in
a round-robin fashion. Thus, we could guarantee that the
number of users per list type was roughly identical.

5.3.2 Result Analysis
For the analysis of our inter-subject survey, we were mostly

interested in the following three aspects. First, the average

rating users gave to their 10 single recommendations. We
expected results to roughly align with scores obtained from
precision and recall, owing to the very nature of these met-
rics. Second, we wanted to know if users perceived their list
as well-diversified, asking them to tell whether the lists re-
flected rather a broad or narrow range of their reading inter-
ests. Referring to the intra-list similarity metric, we expected
users’ perceived range of topics, i.e., the list’s diversity, to
increase with increasing ΘF . Third, we were curious about
the overall satisfaction of users with their recommendation
lists in their entirety, the measure to compare performance.

Both latter-mentioned questions were answered by each
user on a 5-point likert scale, higher scores denoting better
performance, and we averaged the eventual results by the
number of users. Statistical significance of all mean values
was measured by parametric one-factor ANOVA, where p <
0.05 if not indicated otherwise.

5.3.2.1 Single-Vote Averages.
Users perceived recommendations made by user-based CF

systems on average as more accurate than those made by
item-based CF systems, as depicted in Figure 4(a). At each
featured diversification level ΘF , differences between the two
CF types are statistically significant, p� 0.01.

Moreover, for each algorithm, higher diversification fac-
tors obviously entail lower single-vote average scores, which
confirms our hypothesis stated before. The item-based CF’s
cusp at ΘF ∈ [0.3, 0.5] appears as a notable outlier, op-
posed to the trend, but differences between the 3 means at
ΘF ∈ [0.3, 0.5] are not statistically significant, p > 0.15.
Contrarily, differences between all factors ΘF are significant
for item-based CF, p� 0.01, and for user-based CF, p < 0.1.

Hence, topic diversification negatively correlates with pure
accuracy. Besides, users perceived the performance of user-
based CF as significantly better than item-based CF for all
corresponding levels ΘF .

5.3.2.2 Covered Range.
Next, we analyzed whether users actually perceived the

variety-augmenting effects caused by topic diversification,
illustrated before through the measurement of intra-list sim-
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Figure 4: Results for single-vote averages (a), covered range of interests (b), and overall satisfaction (c)

ilarity. Users’ reactions to steadily incrementing ΘF are il-
lustrated in Figure 4(b). First, between both algorithms on
corresponding ΘF levels, only the difference of means at
ΘF = 0.3 shows statistical significance.

Studying the trend of user-based CF for increasing ΘF , we
notice that the perceived range of reading interests covered
by users’ recommendation lists also increases. Hereby, the
curve’s first derivative maintains an approximately constant
level, exhibiting slight peaks between ΘF ∈ [0.4, 0.5]. Statis-
tical significance holds for user-based CF between means at
ΘF = 0 and ΘF > 0.5, and between ΘF = 0.3 and ΘF = 0.9.

On the contrary, the item-based curve exhibits a drasti-
cally different behavior. While soaring at ΘF = 0.3 to 3.186,
reaching a score almost identical to the user-based CF’s peak
at ΘF = 0.9, the curve barely rises for ΘF ∈ [0.4, 0.9],
remaining rather stable and showing a slight, though in-
significant, upward trend. Statistical significance was shown
for ΘF = 0 with respect to all other samples taken from
ΘF ∈ [0.3, 0.9]. Hence, our online results do not perfectly
align with findings obtained from offline analysis. While the
intra-list similarity chart in Figure 3 indicates that diversity
increases when increasing ΘF , the item-based CF chart de-

fies this trend, first soaring then flattening. We conjecture
that the following three factors account for these peculiari-
ties:

• Diversification factor impact. Our offline analysis
of the intra-list similarity already suggested that the
effect of topic diversification on item-based CF is much
stronger than on user-based CF. Thus, the item-based
CF’s user-perceived interest coverage is significantly
higher at ΘF = 0.3 than the user-based CF’s.

• Human perception. We believe that human percep-
tion can capture the level of diversification inherent
to a list only to some extent. Beyond that point, in-
creasing diversity remains unnoticed. For the appli-
cation scenario at hand, Figure 4 suggests this point
around score value 3.2, reached by user-based CF only
at ΘF = 0.9, and approximated by item-based CF al-
ready at ΘF = 0.3.

• Interaction with accuracy. Analyzing results ob-
tained, bear in mind that covered range scores are not
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fully independent from single-vote averages. When ac-
curacy is poor, i.e., the user feels unable to identify
recommendations that are interesting to him, chances
are high his discontentment will also negatively affect
his diversity rating. For ΘF ∈ [0.5, 0.9], single-vote av-
erages are remarkably low, which might explain why
perceived coverage scores do not improve for increasing
ΘF .

However, we may conclude that users do perceive the ap-
plication of topic diversification as an overly positive effect
on reading interest coverage.

5.3.2.3 Overall List Value.
The third feature variable we were evaluating, the overall

value users assigned to their personal recommendation list,
effectively represents the target value of our studies, mea-
suring actual user satisfaction. Owing to our conjecture that
user satisfaction is a mere composite of accuracy and other
influential factors, such as the list’s diversity, we hypothe-
sized that the application of topic diversification would in-
crease satisfaction. At the same time, considering the down-
ward trend of precision and recall for increasing ΘF , in ac-
cordance with declining single-vote averages, we expected
user satisfaction to drop off for large ΘF . Hence, we sup-
posed an arc-shaped curve for both algorithms.

Results for overall list value are given in Figure 4(c). Ana-
lyzing user-based CF, we observe that the curve does not fol-
low our hypothesis. Slightly improving at ΘF = 0.3 over the
non-diversified case, scores drop for ΘF ∈ [0.4, 0.7], eventu-
ally culminating in a slight but visible upturn at ΘF = 0.9.
While lacking reasonable explanations and being opposed
to our hypothesis, the curve’s data-points de facto bear no
statistical significance for p < 0.1. Hence, we conclude that
topic diversification has a marginal, largely negligible impact
on overall user satisfaction, initial positive effects eventually
being offset by declining accuracy.

On the contrary, for item-based CF, results obtained look
different. In compliance with our previous hypothesis, the
curve’s shape roughly follows an arc, peaking at ΘF = 0.4.
Taking the three data-points defining the arc, we obtain sta-
tistical significance for p < 0.1. Since the endpoint’s score at
ΘF = 0.9 is inferior to the non-diversified case’s, we observe
that too much diversification appears detrimental, perhaps
owing to substantial interactions with accuracy.

Eventually, for overall list value analysis, we come to con-
clude that topic diversification has no measurable effects
on user-based CF, but significantly improves item-based CF
performance for diversification factors ΘF around 40%.

5.4 Multiple Linear Regression
Results obtained from analyzing user feedback along var-

ious feature axes already indicated that users’ overall satis-
faction with recommendation lists not only depends on ac-
curacy, but also on the range of reading interests covered.
In order to more rigidly assess that indication by means of
statistical methods, we applied multiple linear regression to
our survey results, choosing the overall list value as depen-
dent variable. As independent input variables, we provided
single-vote averages and covered range, both appearing as
first-order and second-order polynomials, i.e., SVA and CR,
and SVA2 and CR2, respectively. We also tried several other,
more complex models, without achieving significantly better
model fitting.

Estimate Error t-Value Pr(> |t|)

(const) 3.27 0.023 139.56 < 2e− 16

SVA 12.42 0.973 12.78 < 2e− 16
SVA2 -6.11 0.976 -6.26 4.76e− 10

CR 19.19 0.982 19.54 < 2e− 16
CR2 -3.27 0.966 -3.39 0.000727

Multiple R2: 0.305, adjusted R2: 0.303

Table 2: Multiple linear regression results

Analyzing multiple linear regression results, shown in Ta-
ble 2, confidence values Pr(> |t|) clearly indicate that sta-
tistically significant correlations for accuracy and covered
range with user satisfaction exist. Since statistical signifi-
cance also holds for their respective second-order polynomi-
als, i.e., CR2 and SVA2, we conclude that these relationships
are non-linear and more complex, though.

As a matter of fact, linear regression delivers a strong in-
dication that the intrinsic utility of a list of recommended
items is more than just the average value of accuracy votes
for all single items, but also depends on the perceived diver-
sity.

5.5 Limitations
There are some limitations to the study, notably referring

to the way topic diversification was implemented. Though
the Amazon.com taxonomies were human-created, there may
still be some mismatch between what the topic diversifica-
tion algorithm perceives as “diversified” and what humans
do. The issue is effectively inherent to the taxonomy’s struc-
ture, which has been designed with browsing tasks and ease
of searching rather than with interest profile generation in
mind. For instance, the taxonomy features topic nodes la-
belled with letters for alphabetical ordering of authors from
the same genre, e.g., Books→ Fiction→ . . . → Authors,
A-Z → G. Hence, two Sci-Fi books from two different au-
thors with the same initial of their last name would be classi-
fied under the same node, while another Sci-Fi book from an
author with a different last-name initial would not. Though
the problem’s impact is largely marginal, owing to the rel-
atively deep level of nesting where such branchings occur,
the procedure appears far from intuitive.

An alternative approach to further investigate the accu-
racy of taxonomy-driven similarity measurement, and its
limitations, would be to have humans do the clustering, e.g.,
by doing card sorts or by estimating the similarity of any
two books contained in the book database. The results could
then be matched against the topic diversification method’s
output.

6. RELATED WORK
Few efforts have addressed the problem of making top-N

lists more diverse. Only considering literature on collabo-
rative filtering and recommender systems in general, none
have been presented before, to the best of our knowledge.

However, some work related to our topic diversification
approach can be found in information retrieval, specifically
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meta-search engines. A critical aspect of meta-search engine
design is the merging of several top-N lists into one single
top-N list. Intuitively, this merged top-N list should reflect
the highest quality ranking possible, also known as the “rank
aggregation problem” [6]. Most approaches use variations of
the “linear combination of score” model (LC), described by
Vogt and Cottrell [32]. The LC model effectively resembles
our scheme for merging the original, accuracy-based rank-
ing with the current dissimilarity ranking, but is more gen-
eral and does not address the diversity issue. Fagin et al. [7]
propose metrics for measuring the distance between top-N
lists, i.e., inter-list similarity metrics, in order to evaluate
the quality of merged ranks. Oztekin et al. [21] extend the
linear combination approach by proposing rank combination
models that also incorporate content-based features in order
to identify the most relevant topics.

More related to our idea of creating lists that represent the
whole plethora of the user’s topic interests, Kummamuru et
al. [15] present their clustering scheme that groups search
results into clusters of related topics. The user can then
conveniently browse topic folders relevant to his search in-
terest. The commercially available search engine Northern
Light (http://www.northernlight.com) incorporates similar
functionalities. Google (http://www.google.com) uses several
mechanisms to suppress top-N items too similar in content,
showing them only upon the user’s explicit request. Unfor-
tunately, no publications on that matter are available.

7. CONCLUSION
We presented topic diversification, an algorithmic frame-

work to increase the diversity of a top-N list of recommended
products. In order to show its efficiency in diversifying, we
also introduced our new intra-list similarity metric.

Contrasting precision and recall metrics, computed both
for user-based and item-based CF and featuring different
levels of diversification, with results obtained from a large-
scale user survey, we showed that the user’s overall liking
of recommendation lists goes beyond accuracy and involves
other factors, e.g., the users’ perceived list diversity. We were
thus able to provide empirical evidence that lists are more
than mere aggregations of single recommendations, but bear
an intrinsic, added value.

Though effects of diversification were largely marginal on
user-based CF, item-based CF performance improved signif-
icantly, an indication that there are some behavioral differ-
ences between both CF classes. Moreover, while pure item-
based CF appeared slightly inferior to pure user-based CF in
overall satisfaction, diversifying item-based CF with factors
ΘF ∈ [0.3, 0.4] made item-based CF outperform user-based
CF. Interestingly for ΘF ≤ 0.4, no more than three items
tend to change with respect to the original list, shown in
Figure 3. Small changes thus have high impact.

We believe our findings especially valuable for practical
application scenarios, since many commercial recommender
systems, e.g., Amazon.com [16] and TiVo [1], are item-based,
owing to the algorithm’s computational efficiency.

8. FUTURE WORK
Possible future directions branching out from our current

state of research on topic diversification are rife.
First, we would like to study the impact of topic diversi-

fication when dealing with application domains other than

books, e.g., movies, CDs, and so forth. Results obtained may
differ, owing to distinct characteristics concerning the struc-
ture of genre classification inherent to these domains. For
instance, Amazon.com’s classification taxonomy for books
is more deeply nested, though smaller, than its movie coun-
terpart [34]. Bear in mind that the structure of these tax-
onomies severely affects the taxonomy-based similarity mea-
sure c∗, which lies at the very heart of the topic diversifica-
tion method.

Another interesting path to follow would be to param-
eterize the diversification framework with several different
similarity metrics, either content-based or CF-based, hence
superseding the taxonomy-based c∗.

We strongly believe that our topic diversification approach
bears particularly high relevance for recommender systems
involving sequential consumption of list items. For instance,
think of personalized Internet radio stations, e.g., Yahoo’s
Launch (http://launch.yahoo.com): community members are
provided with playlists, computed according to their own
taste, which are sequentially processed and consumed. Con-
trolling the right mix of items within these lists becomes vi-
tal and even more important than for mere “random-access”
recommendation lists, e.g., book or movie lists. Suppose such
an Internet radio station playing five Sisters of Mercy songs
in a row. Though the active user may actually like the re-
spective band, he may not want all five songs played in se-
quence. Lack of diversion might thus result in the user leav-
ing the system.

The problem of finding the right mix for sequential con-
sumption-based recommenders takes us to another future di-
rection worth exploring, namely individually adjusting the
right level of diversification versus accuracy tradeoff. One
approach could be to have the user himself define the de-
gree of diversification he likes. Another approach might in-
volve learning the right parameter from the user’s behavior,
e.g., by observing which recommended items he inspects and
devotes more time to, etc.

Finally, we are also thinking about diversity metrics other
than intra-list similarity. For instance, we envision a metric
that measures the extent to which the top-N list actually
reflects the user’s profile.
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